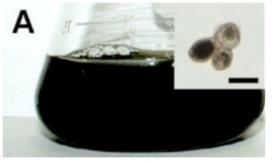

Probing Molecular Mechanisms of Radioresistance in Melanized Fungus

Haley Schramm (1), Brian Clowers (1), George Bonheyo (2)

Discovery of Radioresistance

- Microorganisms discovered at Chernobyl in 1991
- Wangiella dermatitidis (Exophiala dermatitidis)
 - Melanin deposited in the cell wall
 - Full genome sequenced
 - Proteome remains unexplored
- Early investigations demonstrated increased growth rates when exposed to radiation
- Radiotropism
 - Characteristic of organisms to proliferate in radiative environments

Contradicting Results

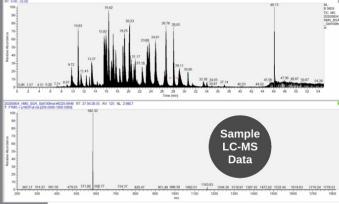

Dadachova et al. 2007.

- Irradiated *W. dermatitidis* colonies with and without melanin (albino mutant)
- Observed that melanized colonies were resistant to much higher levels of radiation
- Conclusion: Melanin protects fungi from ionizing radiation
 - free radical quenching, possible energy capture

Robertson et al. 2012.

- Transcriptomic study of gene response to ionizing radiation
- Saw only 5% of differentially regulated genes were melanin specific
- Conclusion:

 Radiotropism stems
 from components
 other than melanin



A: Melanized *W. dermatitidis* **B:** Albino mutant with no appreciable levels of melanin

Bottom-Up Proteomics

- Proteins are relatively large molecular species
 - Analysis of intact proteins presents challenges
- Bottom-up utilizes protease to break down proteins
 - Trypsin: selective at Lys and Arg residues
- Digested peptides are analyzed with liquid chromatography then mass spectrometry
- Reassembling the puzzle pieces of the proteome

100 fmol Tryptic Digest of Bovine Serum Albumin

Goals and Outcomes

Year 1: 2020

- Train on sample preparation and instrument protocols
- Obtain wild type, melanized
 W. dermatitidis and albino
 mutant
- Method developments
 - Sample analysis
 - Informatics
- Compare proteome of wild type and albino mutant

Future Directions

- Sample irradiation
 - Different sources
 - Chronic vs. dosed exposure
- Identify biological signatures
 - Comparing proteome results
 - Quantitative proteomics
- Develop a biosensor
 - Low cost
 - Exploit identitfied biological signatures

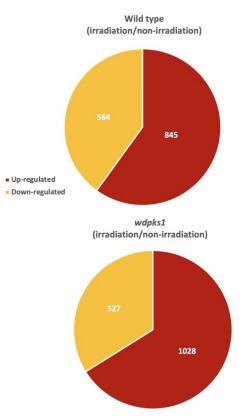


Figure adapted from Robertson *et al:* Comparing the number of differentially regulated genes after exposure to radiation for melanized wild type *W. dermatitidis* and its albino mutant, *wdpk1*.

References

Vogel C, Marcotte EM. *Insights into the regulation of protein abundance from proteomic and transcriptomic analyses*. **2012**. doi:10.1038/nrg3185

Daly, MJ. Death by protein damage in irradiated cells. **2011**. doi:10.1016/j.dnarep.2011.10.024

Robertson KL, et al. *Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms*. **2012**. https://doi.org/10.1371/journal.pone.0048674

Dadachova E, et al. *Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi.* **2007**. https://doi.org/10.1371/journal.pone.0000457