

Influence of Al fraction on the defect spectra of MOCVD grown

β -(Al_xGa_{1-x})₂O₃

Hemant Ghadi, Evan Cornuelle, Joe F. McGlone, A F M Anhar Uddin Bhuiyan, Hongping Zhao, Aaron Arehart, and Steven A. Ringel Department of Electrical and Computer Engineering The Ohio State University Columbus, OH 43210

Abstract:

Beta phase gallium oxide (β -Ga₂O₃) is an ultra-wide bandgap (UWBG) semiconductor with advantages such as superior device figures of merit for both RF and high-voltage applications and high radiation hardness due to higher bond strength associated with smaller lattice constant. Alloying β -Ga₂O₃ with aluminum produces β -(Al_xGa_{1-x})₂O₃ and is essential for heterostructurebased devices with higher radiation tolerance. These UWBG semiconductors and designed heterostructures are attracting interest for circuit and sensing applications in a harsh radiation environment. Critical to success in real-world applications, it is crucial to understand the defect states in β -(Al_xGa_{1-x})₂O₃. The present study addresses the initial exploration of the defect characterization using conventional electrical characterization and deep-level thermal and optical based defect spectroscopies (DLOS, DLTS) on β -(Al_xGa_{1-x})₂O₃ at varying alloy compositions and will be compared with the reported defect spectra on β -Ga₂O₃.

 β -(Al_xGa_{1-x})₂O₃ epitaxial layer was grown by MOCVD atop a commercially available β -Ga₂O₃ (010) Sn-doped EFG-grown substrates. The nominal Al mole fraction was 3,5,7 and 10%, confirmed by high-resolution x-ray diffraction. Ni Schottky diodes were fabricated on the β -(Al_xGa_{1-x})₂O₃ epitaxial layer, and Ti/Al/Ni/Au ohmic contacts were deposited on the Sn-doped substrate. The average net ionized doping concentration for the series of samples from 3% to 10% Al were 1.2, 1.1, 1.0, and 0.8 × 10¹⁸ cm⁻³, respectively. The Schottky barrier heights (SBH) for each sample were extracted from IPE measurements and were found to increase with Al composition; however, the calculated values of SBH were influenced by surface pinning. Compared to defect spectra on β -Ga₂O₃, the β -(Al_xGa_{1-x})₂O₃ material demonstrated a higher defect concentration by 10-100 times. A total of five defect levels were measured, three by DLTS and two deeper defects by DLOS in each β -(Al_xGa_{1-x})₂O₃ sample. Specific trends and detailed discussion on each defect states with dependence on Al composition will be discussed in the workshop.