

ETI Annual Workshop -- 2023

Build Geometry Monitoring & Control for Wire Arc Additive Manufacturing Process

Alexandra Schueller Georgia Institute of Technology February 8, 2023

Problem

WAAM bead height varies considerably during a build

- Makes path planning difficult & trial & error approach necessary
 - Increases manufacturing time
 - Increases costs due to additional material, operator hours, & electricity used
 - Risks damage to machine if welder hits overbuilt part

Wire arc additive manufacturing (WAAM) process

Proposed Solution

• Adjust WAAM parameters in real-time to keep a constant layer height

Proposed Solution

- <u>Application</u>: Adjust WAAM parameters in real-time to keep a constant layer height
- <u>My goal</u>: Design a ML / pattern recognition model which predicts WAAM parameters to be used for each bead section
 - System inputs:
 - Thermal conditions (IR image data)
 - Interpass temperature, temperature at this location shortly before this layer, previous cooling rate at this location, previous weld pool geometry (length, width) at this location, build plate temperature, etc.
 - Desired layer height
 - Parameters to predict / update:
 - Power
 - Wire feed speed
 - 9-class classification problem (3 power values & 3 wire feed speeds)

Experiments

- Machine: Tormach WAAM system at ORNL
- Material: Mild steel
- Initial Experiments:
 - Goal: determine the parameter sets for tallest & shortest layer heights possible, while keeping acceptable build quality
- Main Experiments:
 - Rectangular pads
 - 6 beads wide & 8 layers tall
 - Varied parameters:
 - Traverse speed (3 values)
 - Wire feed rate (3 values)
 - 9 builds total
 - Data collection:
 - Laser light scans after each build layer to capture bead heights
 - IR camera capturing thermal conditions (4 Hz)

152.4 mm

5

Mission Relevance & ETI Impact

Mission Relevance:

- Metal AM like WAAM can create parts of virtually any shape, from easily-accessible wire or powder
 - Could be used by opposing entities to bypass export controls or produce parts for nuclear weapons without being detected
- Technology like this could discreetly monitor the geometry of parts being constructed, & flag predicted geometries which match restricted part shapes
- This system could also improve American manufacturing efficiency, quality, & sustainability

ETI Impact:

- Experimentation conducted at ORNL during summer internship
- ORNL cutting-edge machines & experienced researchers have been invaluable for project & personal development

Future Work

- Finish writing IR image processing code & calculating thermal features
- Analyze patterns between thermal features, bead geometry, & process variables
 - Test several pattern recognition techniques, including ML & non-ML strategies
- Evaluate effects of layer #, bead location in layer, process parameters, & thermal conditions on system effectiveness at predicting bead geometry & parameters used
- Potentially return to ORNL to run more experiments
- PhD proposal planned for this summer

ACKNOWLEDGEMENTS

Partners: Drs. Christopher Saldaña & Kyle Saleeby

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

