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)) Introduction and Motivation

« Machine Learning and Artificial Intelligence (ML/AI) techniques
are transformative but data-hungry
* We often have significant prior knowledge about data trends (e.g.,
seasonality in remote sensing)
* Incorporating prior knowledge Is:
« Challenging in deep learning
* Routine in probabilistic models (e.g., Gaussian processes)

« Can we exploit relationships between deep neural networks and
Gaussian processes to use prior information?
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)) Mission Relevance

« Reducing sample complexity can improve nuclear monitoring from
space-based sensors through more efficient data analysis

* Al models can be trained with fewer resources, leading to faster and
more accurate detection of potential nuclear proliferation activities

« Additionally, reducing sample complexity can also improve the ability
of these models to identify patterns and anomalies in the data, which
IS crucial for detecting potential nonproliferation activities




» Composite Kernels for
Gaussian Processes (GPs)

 Gaussian processes are probabilistic
models for learning smooth functions from
a mean function u(-) and covariance

kernel k(-,-):
f~GP(uk)

* The kernel function encodes relationships
petween data points. Suppose that we
nave data made up of two modalities x =

x(, x(2)], we can use a composite kernel
1 1 2 2
k() = ke (x,2P) x Iy (r 2, x2)
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» Composite Kernels are common
for spatiotemporal data

« Can consider first modality as covariates
and second modality as time/space

« Easy to enforce periodicities or spatial
smoothing by choosing k, to encode
desired relationship

* For example, seasonality can be encoded
by a periodic kernel:
k, = exp(—2sin?(d/2)/¢£?)

*r@D e RDP1 x(2) € RP2
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K comp

y= f(x(l)»x(z)) ~ g.'P(O, Kcomp)




» Neural Networks
Approximate GPs

« Arandomly initialized Neural Network
approaches a GP with an implicit kernel
kyy (With a few assumptions):

fan(x) = GP(0,kyy)

* We propose to use a neural network to
handle the covariate data (e.g., satellite
Image or sensor data) while explicitly
defining the second relationship
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)) Approximates a
Composite Kernel GP

* Theorem 4.1 of Jiang et al proves that
this approach approximates a composite
kernel if we can define the mapping:

z?) = g(x@) s.t.

* We can construct such a mapping froma [TTTT1T] (1]
Nystrom approximation and Cholesky 7V € RP Inner product z® e RP
Decomposition in 0(p3) time
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)) Empirically matches theoretical
posterior

« Can approximate a posterior
by ensembling different -1

neural network initializations ™ :
 For specific neural
networks, the implicit kernel -3 ——
IS known and the posterior = xisin()
can be analytically N e e
CaICUIated. = \/ == |CK-NNGP analytic \../
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» Empirically Improves Remote Sensing
Tasks and Seasonal Predictions

Table 1. Correlation and error statistics of ICKy and other joint
deep models with both convolutional and attention-based architec-

tures on the PMs._5 forecasting task. “S.” denotes seasonal variants. Table 2. Prediction error of actual worker productivity on the test

Rspear RMSE _ MAE | MSLL data set with ICKy and other benchnj%rk models (MLPs arl(; NPs)
MSE | (x107°) MAE | (x10™7)
CNN-RF 0.00 194.63 185.83 -
. MLP 20.16 £ 1.26 9.93 £+ 0.36
ViT-RF 0.07 190.82 181.63 - .
Cyclic MLP 20.97 £ 1.98 10.16 +£ 0.77
S. CNN-RF 0.62 53.36 39.38 96.77
: GNP 57.25 £ 4.31 19.39 +£ 0.94
S. ViIT-RF 0.66 56.45 41.73 14.69 AGNP 4311 & 5.95 14.38 + 088
S. Deep-ViT-RF | 0.65 56.36 42.46 17.63 7= 4 4 1 _ _
S.MAE-ViTRF | 0.67 5387 4078 | 31.09 DAl B P b
CNN-ICKy 0.62 53.46 39.76 10.92 ICK y’T __30 0'31 L 0'09 1'17 ot 0'14
VIiT-ICKy 0.68 56.56 41.41 12208 Y, 1 = ’ ’ ’ :
DeepViT-ICKy 0.66 52.41 35.93 | 38220
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)) Conclusion

* We can encode prior knowledge into deep neural networks by
defining a kernel on part of the data

« Straightforward to incorporate known spatial or temporal relationships
« Algorithmic framework is theoretically proven and empirically robust

« Can improve predictive performance or reduce data necessary for
acceptable performance
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)) ETIImpact

« ETI funding and conversations have helped support and clarify this
research vision
« Students went to national labs this past summer

« We are very interested in applying this technology on additional
real problems

 Code (MIT License) Is available by request, with the full release
soon
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