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Introduction and Motivation

• Machine Learning and Artificial Intelligence (ML/AI) techniques 

are transformative but data-hungry

• We often have significant prior knowledge about data trends (e.g., 

seasonality in remote sensing)

• Incorporating prior knowledge is:

• Challenging in deep learning

• Routine in probabilistic models (e.g., Gaussian processes)

• Can we exploit relationships between deep neural networks and 

Gaussian processes to use prior information?
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Mission Relevance

• Reducing sample complexity can improve nuclear monitoring from 
space-based sensors through more efficient data analysis

• AI models can be trained with fewer resources, leading to faster and 
more accurate detection of potential nuclear proliferation activities

• Additionally, reducing sample complexity can also improve the ability 
of these models to identify patterns and anomalies in the data, which 
is crucial for detecting potential nonproliferation activities
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Composite Kernels for 
Gaussian Processes (GPs)

• Gaussian processes are probabilistic 
models for learning smooth functions from 
a mean function 𝜇 ⋅ and covariance 
kernel 𝑘(⋅,⋅):

𝑓 ∼ 𝐺𝑃 𝜇, 𝑘

• The kernel function encodes relationships 
between data points.  Suppose that we 
have data made up of two modalities 𝑥 =
𝑥 1 , 𝑥 2 , we can use a composite kernel

𝑘 𝑥𝑖 , 𝑥𝑗 = 𝑘1 𝑥𝑖
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Composite Kernels are common 
for spatiotemporal data

• Can consider first modality as covariates 
and second modality as time/space

• Easy to enforce periodicities or spatial 
smoothing by choosing 𝑘2 to encode 
desired relationship

• For example, seasonality can be encoded 
by a periodic kernel:

𝑘2 = exp −2 sin2(𝑑/2)/ℓ2
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Neural Networks 
Approximate GPs

• A randomly initialized Neural Network 
approaches a GP with an implicit kernel 
𝑘𝑁𝑁 (with a few assumptions):

𝑓𝑁𝑁 𝑥 → 𝐺𝑃 0, 𝑘𝑁𝑁
• We propose to use a neural network to 

handle the covariate data (e.g., satellite 
image or sensor data) while explicitly 
defining the second relationship
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Approximates a 
Composite Kernel GP

• Theorem 4.1 of Jiang et al proves that 
this approach approximates a composite 
kernel if we can define the mapping:

𝑧 2 = 𝑔 𝑥(2) 𝑠. 𝑡.

𝑘2 𝑥𝑖
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• We can construct such a mapping from a 
Nyström approximation and Cholesky 
Decomposition in 𝑂 𝑝3 time

7



8

Empirically matches theoretical 

posterior

• Can approximate a posterior 
by ensembling different 
neural network initializations

• For specific neural 
networks, the implicit kernel 
is known and the posterior 
can be analytically 
calculated.



Empirically Improves Remote Sensing 
Tasks and Seasonal Predictions
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Conclusion

• We can encode prior knowledge into deep neural networks by 
defining a kernel on part of the data
• Straightforward to incorporate known spatial or temporal relationships

• Algorithmic framework is theoretically proven and empirically robust

• Can improve predictive performance or reduce data necessary for 
acceptable performance
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ETI Impact

• ETI funding and conversations have helped support and clarify this 
research vision
• Students went to national labs this past summer

• We are very interested in applying this technology on additional 
real problems

• Code (MIT License) is available by request, with the full release 
soon
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