

ETI Annual Workshop -- 2023

Boron-Doped Polysiloxane Organic Scintillators

M. Duce¹, C. Chandler², A. Sellinger², A. Erickson¹
¹Georgia Institute of Technology, ²Colorado School of Mines
February 8, 2022

Motivation

- Scintillators respond to ionizing radiation by emitting photons
- Polysiloxanes are an alternative to thermoplastics like poly(vinyltoluene) PVT with reduced processing times and do not require overdoping

Eljen Technology A. Lim, J. Arrue, P. Rose, A. Sellinger,, A. Erickson, ACS Appl. Polym. Mater., 2020, 2, 8, 3657-3662

2 2

Mission Relevance

• Triple particle detection can support many detection applications

Rose, P., Erickson, A., Mayer, M, Nattress, J., Jovanic, I., Scientific Reports, 3016

>> PVT vs. Polysiloxane-based scintillators

	PVT	Polysiloxane $\begin{bmatrix} c_{H_3} \\ s_{i-0} \\ c_{H_3} \end{bmatrix}_n \begin{bmatrix} c_{H_3} \\ s_{i-0} \\ c_{H_3} \end{bmatrix}_n$
Transparency	Yes	Yes
Physical Properties	Hard, rigid	Variable
Radiation Hardness	No	Yes
Thermal Stability	No	Yes
Fabrication	5 days, air sensitive	3 hrs, in air
Cost	\$0.08/g	\$0.75 - \$16/g
PSD	@ 20%wt dopant	@ 5%wt dopant

Bertrand, G. H. V.; Hamel, M.; Sguerra, F. *Chem. Eur. J.* 2014, 20 (48), 15660–15685. Quaranta, A. et al. *Nucl. Instrum. Methods Phys. Res., B.* 2010, 268 (19), 3155–3159. Marchi, T. et al. *Sci. Rep.* 2019, 9 (1), 9154. Prices from Sigma, Gelest, TCI America, and Nusil

Fabrication – Colorado School of Mines

add Part A,

Vortex, then cure at 150 C for 3 hrs in air

Add SFS, PPO

Add xylenes

Solubilize and mix, add Part B

Common Fabrication Challenges

Glass Internal Cracked Bubbling

Dopant Precipitation on Surface

 Precipitation

Internal

Cracked

Cracked

Surface Coloration

Primary Fluorophores

- Primary dopants (fluorophore):
 - 9,9-dimethyl-2-phenyl-9H-fluorene (PHF)
 - 2,5-diphenyloxazole (PPO) : Industry-standard fluorophore
- Secondary dopant (wavelength shifter):
 - 9,9-dimethyl-2,7-distyryl-9H-fluorene (SFS)

A. Lim, J. Arrue, P. Rose, A. Sellinger,, A. Erickson, ACS Appl. Polym. Mater., 2020, 2, 8, 3657-3662

>> Detector Characterization

• "Efficient" FOM at 1.27

Knoll, Radiation Detection and Measurement Zaitseva, N., Rupert, B., PaweLczak, I., Glenn, A., Martinez, H., Carman, L., Faust, M., Cherepy, N., Payne, S., NIM A, 2012

8

- Polysiloxane fabrication with Wacker Lumisil 579, PHF, PPO
 - FoM of 1.09 ± 0.03 with 5% PHF at 450keV
 - FoM of 1.33 ± 0.03 with 5% PPO at 450keV

	λ _{max} , PPO [nm]	λ_{max} , PhF [nm]	
1 wt % in polysiloxanes	407	356	
4 wt % in polysiloxanes	411	360	
1 wt % in PVT	400	398	
20 wt % in PVT	408	405	

EJ200 max is 425

A. Lim, J. Arrue, P. Rose, A. Sellinger,, A. Erickson, ACS Appl. Polym. Mater., 2020, 2, 8, 3657-3662

B-10 Enriched Molecules

Previous work with phenyl B-10 enriched molecule for thermal neutron detection with PVT matrix, PPO, POPOP¹

A. Mahl, H.A. Yemam, R. Fernando, J.T. Koubek, A. Sellinger, U. Greife, NIM A, 2018, 880, 1-5

Boron-Loaded Matrices

- Polymer resins used:
 - Wacker Lumisil 579
 LED encapsulant
 - Shin-Etsu KER-6000
 - LED encapsulant
 - Wacker SILRES H62C
 - electronics encapsulant

	R.I.	Hardness	_Mix_	Cure
Nacker 579	1.53	25 Shore A	2-component	150 °C / 1 hr
KER-6000	1.51	22 Shore A	2-component	100 °C / 1 hr, 150 °C / 2 hr
SilRes H62C	1.50	65 Shore D	1-component	150 °C / 10 hr

- Cs-137 Measurements
 - Compton edge calculated per Safari et. al

	Light Yield (%EJ200, %Anthracene)			
B-10 enriched molecule	5% PHF	5% PPO	20% PHF	Matrix
	53, <mark>3</mark> 4	45, <mark>29</mark>		KER6000
5% Phenyi-	49, 3 1	45 <i>,</i> 29		Wacker
4% Tolyl-	62, <mark>40</mark>	39, 25		KER6000
	39, <mark>25</mark>	23, <mark>15</mark>	71,45	Wacker
5% Trifluoro-	55, 35	51, <mark>33</mark>		KER6000
	39, 25	33, <mark>2</mark> 1		Wacker

Eljen Technology Safari, M.J., Davani, A., Afarideh, H, Radiation Physics and Engineering, 2016

12

PSD Plots

x = GMM cannot converge

	FoM at 500keV			
B-10 enriched molecule	5% PHF	5% PPO	20% PHF	Matrix
5% Phenyl-	1.09	0.81		KER6000
	х			Wacker
4% Tolyl-	1.17	0.78		KER6000
	0.64	0.62	1.03	Wacker
5% Trifluoro-	1.10	1.21		KER6000
	С	0.69		Wacker

• Efficient PSD at 1.27 FoM

Figure of Merit (n_{th}, γ)

	FoM at 500keV			
B-10 enriched molecule	5% PHF	5% PPO	20% PHF	Matrix
5% Phenyl-	0.48	0.48		KER6000
	0.34	0.38		Wacker
4% Tolyl-	0.47	0.47		KER6000
	0.29	0.36	0.32	Wacker
5% Trifluoro-	0.48	0.54		KER6000
	0.33	0.33		Wacker

• EJ309-B: 0.65 FoM

ETI Impact

- Internship at LBL supporting the EOS demonstrator
- Presentation at IEEE MIC/NSS 2022
 - Arrue, J., Chandler, C., Duce, M., Sellinger, A., Erickson, A., "Boron Doped Polysiloxane Organic Scintillators for Thermal and Fast Neutron Detection Via Pulse Shape Discrimination"
- Collaboration with Colorado School of Mines
- Ex-Core measurements with Texas A&M

Conclusion

- Boron-enriched molecule doped did not diminish $FOM(n, \gamma)$ from previous polysiloxane trials
- Best FOM $(n_{th}, \gamma) = 0.54\,83\%$ of EJ309-B
- Best light yield 62% of EJ200
- Successful triple particle detection!

>>> Thank you

- LANNS Group
 - Alex England
 - Ian Schreiber
 - Caiser Bravo
 - Natalie Cannon
 - Matthew Dunbrack
 - Jana Shade
 - Pierre O'Driscoll
 - Anna Schafer
 - Dr. Anna Erickson
 - Dr. Yuguo Tao
- Caleb Chandler, Dr. Allen Sellinger

ACKNOWLEDGEMENTS

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

Light Yield – Compton Edge

21

FoM Calculation: GMM

Phenyl, KER6000, PHF

Gate	Means	Stds	FWHMs	FoM	R^2
69	0.191, 0.300	0.019, 0.024	0.044, 0.064	1.08	0.96
70	0.180, 0.288	0.019, 0.023	0.044, 0.055	1.09	0.95
71	0.180, 0.288	0.019, 0.023	0.044, 0.055	1.09	0.95
72	0.170, 0.275	0.018, 0.023	0.043, 0.055	1.09	0.93

Ion quenching in boron-doped organic scintillators

Boron Capture Peak (PVT+1%PPO+0.1%POPOP+x%B2PIN2)

Figure 3: Number of counts versus calibrated pulse area (keV_{ee}) for ¹⁰B thermal neutron reaction spectra with gamma response subtracted via cadmium shielded measurement. The keV_{ee} sample scale adjusts all samples to the ¹³⁷Cs Compton edge position of each sample (light yield adjustment) to make changes in alpha quenching apparent.

Figure 2: Number of counts vs uncalibrated pulse area in scintillating PVT based samples as measured through exposure to a 137 Cs γ -source using the same PMT bias value.

Adam Mahl*,2 Henok A. Yemam*,1 John Stuntz,1 Tyler Remedes,2 Alan Sellinger,1 Uwe Greife 2, et al, Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators, NIM A, <u>Volume 816</u>, 21 April 2016, Pages 96-100, <u>https://doi.org/10.1016/j.nima.2016.01.073</u>, 2016

Shore Hardness Scale

VinyItoluene Scintillator Fabrication

Plastic scintillators are fabricated via a thermally initiated radical bulk polymerization

- Dissolve dopants in monomer
- Bubble with argon
- Polymerize in vacuum oven
 - 4 days at 80 °C
 - 1 day at 90 °C
 - → 5 days

Siloxane-based Scintillator Fabrication

- Hydrosilylation: common and well studied method of to cross-link into solid
- Linking of vinyl- and SiH
- 2-part mix and heat cure procedure
- Not air sensitive!
- Macromonomer resins are not volatile!

Hofmann, R. J.; Vlatković, M.; Wiesbrock, F. Polymers, 2017, 9 (10), 534. Sakaki, S.; Mizoe, N.; Sugimoto, M. Organometallics, 1998, 17 (12), 2510–2523. Comprehensive Handbook on Hydrosilylation; Marciniec, B., Ed.; Elsevier, 1992. Mazurek, P.; Vudayagiri, S.; Skov, A. L. *Chem. Soc. Rev.* 2019, 48 (6), 1448–1464

Silanization of Vials

Several different vial sizes can be used

When silanized, methanol runs down vial wall in distinctive rings

Vortex

Wait for bubbles to dissipate – mild heat can help

150 C, 3 hrs, Sealed in Air

Cured solid!

Cap Off

Hit here, once covered!

Cover sample to contain glass

Initial Break

Stuck Glass

Bottom

Lab Light (Fluorescent)

TLC Lamp (365 nm)

