Large-Volume Scintillator Detectors for Nuclear Nonproliferation

Oliver Moreno, Silja Abraham, Jingwei Yang, and Bernard Kippelen

ETI TA3

Advisor: Bernard Kippelen

omoreno3@gatech.edu

Feb 9th, 2023

Introduction

Collaborating Members

Plastic scintillator detectors

Oliver Moreno

Dr. Bernard Kippelen Large Volume WbLS

Diwan

Dr. Milind

Plastic Scintillators for UxV Component

Project Summary

- 3D printable plastic scintillator with mechanical properties suitable for rugged UxV applications
- Need for higher detector surface area without adding payload weight
- Approach
 - Photo-crosslinked matrix
 - CMB loading for increasing capture cross-section
 - Green TADF emitters for increasing exciton harvest
- Metrics
 - Thermogravimetric: T_d 200-300 °C
 - DSC showed no glass transition
 - Microindentation: uniaxial yield strength ~66 Mpa for compositions with up to 40 wt.% of CMB

S. Abraham *et al.*, An approach towards plastic scintillators from thermally activated delayed fluorescent dyes and cross-linkable bismuth compounds. *Journal of Materials Chemistry C* **10**, 17481-17488 (2022).

Payload limitations for power management

UxV Application

Mid-Range Detection Need for body components that serve detector function

Approach

Optical Characterization

- Absorption measurements show tradeoff between transparency and CMB loading
- Green emission spectrum under 365 nm UV lamp suitable for some PMT choices
- Sample thicknesses of ~2.7 mm

PVT Scint. (wt.%)	Vinyl toluene (wt.%)	DVB (wt.%)	TADF Dye (wt.%)	CMB (wt.%)	Bi (wt.%)
A0	94.05	4.95	1	0	0
A40	59	0	1	40	16.91
B0	94.05	4.95	1	0	0
B40	59	0	1	40	16.91

Mechanical Characterization

Uniaxial yield strength ~66 Mpa for compositions with up to 40 wt.% of CMB T_d beyond 200 °C

S. Abraham *et al.*, An approach towards plastic scintillators from thermally activated delayed fluorescent dyes and cross-linkable bismuth compounds. *Journal of Materials Chemistry C* **10**, 17481-17488 (2022).

Time-Resolved Measurements

Overlap Volume Relative

S. Abraham *et al.*, An approach towards plastic scintillators from thermally activated delayed fluorescent dyes and cross-linkable bismuth compounds. *Journal of Materials Chemistry C* **10**, 17481-17488 (2022).

Water-based Liquid Scintillator for Large Volume Detector

Large Volume WbLS

10%

WbLS

LS

Motivation

- Directional reconstruction of Cherenkov radiation and scintillation
- Adjustable light yield
- Vary attenuation length
- Low toxicity

Ongoing work: 1-ton detector

- Signal analysis of downward muon and Cherenkov radiation emitted
- Understanding distribution for trajectory reconstruction

T. Kaptanoglu, E. J. Callaghan, M. Yeh, G. D. Orebi Gann, Cherenkov and scintillation separation in water-based liquid scintillator using an LAPPDTM. *The European Physical Journal C* 82, 169 (2022).

Concurrent Exploration

Spectral *irradiance*
$$[W * m^{-2} * sr^{-1}] = \int SPD(\lambda) * QE_{det}(\lambda) * d\lambda$$

 $N_{e^-} = G \sum N_{photons} * QE_{det}(\lambda)$

Status: fabrication of ITF

Summary

- 3D-printable plastic scintillators with favorable mechanical properties
- Ongoing work to design and prototype large-volume detectors with BNL for high-energy physics
 - Developing method for consistent distribution characterization
- Assisting BNL team with signal processing for separation of Cherenkov and scintillation light

ACKNOWLEDGEMENTS

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

