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)) Introduction and Motivation

e Laser Powder Bed Fusion (LPBF) has been
identified as a relevant process regarding
nuclear non-proliferation

* This family of additive manufacturing (AM)
processes can be used to produce parts relevant
to the nuclear fuel cycle

e Selective Laser Sintering (SLS) is a LPBF process
that can be modified to print oxide ceramics

* |n order to print oxides using SLS, a polymeric
binder must be developed
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) Selective Laser Sintering (Polymers)
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Figure 2: SLS Overview [2]
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)) Indirect Selective Laser Sintering of Oxides
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)) Composite Powder Synthesis
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Figure 3: Green Part Strength by Synthesis Method [3]
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)) Spray Drying as a Coating Process

e Spray drying has been chosen as the process
to coat ceramic particles with polymer

* Three main steps:
~ Droplet formation (high surface area)
- Drying of droplets to form solid particles
~ Particle Collection

* Will give desired binder distribution and
allow for less binder to be used

NS

National Nuclear Security Administration

Ak'1!§ J ‘
Nozzle \

Atomization
- droplet
generation

Drying

Drying chamber
0000
[ .. N L

CL A ]

. .
e
o.. -

Vessel for| |
undried
particles [

Particle formation Particle collection

Figure 4: Spray Drying Process [4]




)) Polymer Binder Constraints

Spray Drying
Binder
Constraints

+ Binder Constraints

e ThermOpIaStIC POIVmer No commercially available options for
* ~50°C<T,<~100°C binder

* Decomposesin N,
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)) Custom Polymer Binder Selection

* An 80% PMMA, 20% PnBMA co-polymer has
been chosen as the binder to develop

* T, PMMA =~120 °C; T, PnBMA =~20 °C

T, 8020 = 0-8(120 °C)+0.2(20 °C) =100 °C

* This polymer unzips in N, at elevated
temperatures making it compatible with oxygen
sensitive oxides
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Figure 5: Co-polymerization Process
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)) Binder Development Experimentation

* Three emulsion polymerizations were
performed
-~ 100% PMMA
- 100% PnBMA
-~ 80% PMMA/20% PnBMA mol/mol

* Nuclear magnetic resonance spectroscopy
(NMR) was performed to check polymer

molecular composition @,

* Differential scanning calorimetry (DSC) was -
performEd to tESt glass tranS|t|On Figure 6: Obtained emulsion polymers
temperature
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)) Nuclear Magnetic Resonance Results
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Figure 7: NMR of All Three Formulations Figure 8: 80/20 NMR Analysis Results
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)) Differential Scanning Calorimetry Results

DSC 80/20 PMMA/PnBMA

* DSC revealed T, pure PMMA to
be 127 °C

* This puts our 80/20 estimate at
106 °C e
* DSC analysis of the 80/20

formulation showed a Tg of
~105 °C

Figure 9: DSC of 80/20 Formulation
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)) Conclusions and Future Work

* A custom polymer binder that is compatible with spray drying and SLS
has been developed

* This will allow for I-SLS of ceramic oxides (including nuclear relevant
oxides) to be tested

* Next steps include identifying optimum spray drying and SLS parameters
with the developed binder

* The geometrical limitations and material properties of the printed oxides
will be explored

* The signatures of the process will be identified
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IS Tg > 100°C OK?

* Short answer: Maybe, it depends on
the spray dryer!

 Thereal requirement is that both the
inlet and outlet temperature of the
spray dryer is greater than T, of the
coating polymer

* Foran aqueous based system, inlet
and outlet temperature also needs to
be greater than 100 °C to dry

T, > T, > 100 °C
T, > T, > T,

Table 4.1 Equilibrium spray drying conditions.

WHAT STARTS HERE CHANGES THE WORLD

Heater Setting,  Inlet Temperature, Outlet Temperature, = Time Required,
(kW) (O (). Q) (min)
3 100-105 100-110 (38-43) 10
4 125-130 125-150 (52-66) 10-15
5 150-155 170-190 (77-88) 15-20
6 180-185 230-240 (110-116) 25-30
7 205-210 250-265 (121-129) 30-35
9 250-260 280-300 (138-149) 40-45

|

Example Spray Dryer’s

Operating Settings
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Interpreting NMR Results

2Ry
Ym = 3ty
m 2h
/\//(Y 1+ ﬁ
HE(CH) 5 O OCHs
Y., --- mole fraction of MMA
(4 h,, ... area under MMA peak
A - | h, ... area under nBMA peak
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Source: NMR of 80/20 PMMA/PnBMA mol/mol [3]



