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Problem: An under-quantified hazard

Metal contamination in the environment is a widespread
problem that results from mining, industrial processes,
agricultural inputs, sewage sludge releases, and munitions
activities. High metal contamination can inhibit crop
growth, risk food safety, and jeopardize human health (1).
Metals can also impede many aspects of ecosystem
functioning, including biomass production, plant
recolonization, and community assembly (2,3). However,
identifying locations with high metal contamination is
labor-intensive and costly, which prohibits large scale
monitoring efforts.

Ourinability to quantify metal contamination at scales
thatare relevant for land management decisions limits our
ability to predict how contamination alters ecosystem
functions; and subsequently undercuts our capacity to
assess and mitigate risks to communities, the
environment, and food supplies.
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Solution: Hyperspectral bioindicators
Hyperspectral remote sensing (imaging spectroscopy)
collects hundreds of very narrow (~3-20 nm), contiguous
bands. This increased spectral resolution allows for
greater diagnostic capabilities than is possible with
multispectral sensors (4).
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Figure 3. Example of vegetation spectra. Contiguous data over narrow
bands yields more information. Figure by Adam Chlus.

When plants are exposed to environmental stressors, they
can respond with detectable physiological or chemical
changes. Spectroscopy is already in widespread use to
measure agricultural productivity and plant functional
traits (5, 6). The increasing availability of spaceborne
hyperspectral imaging platforms offers unprecedented
potential to collect remote, high-frequency,
non-destructive measurements over large scales. These

111 PN T~ — L e

Kate Thompson' and Philip A. Townsend’
"Department of Forest and Wildlife Ecology, University of Wisconsin-Madison
Contact: kmthompson24@wisc.edu

Developing these features could leverage local vegetation
as passive, low-cost bioindicators of pollution.
Operationalizing this requires: (i) quantifying the
physiological and chemical changes that contaminants
induce in vegetation; (ii) differentiating between stress
responses induced by contaminants versus other
environmental stressors; (iii) assessing the interactive
effects between multiple environmental stressors; and (iv)
characterizing species-specific interactions with
contaminants.

Methods

Metals of interest

This work focuses on chromium(VI1) and copper
contamination. Chromium(V1) is widely used to prevent
corrosion in nuclear power reactors and other large-scale
industrial facilities. Itis also extremely hazardous to
human health and drinking water sources. Identifying
hyperspectral bioindicators for chromium(VI) would
enable airborne sensors to monitor local vegetation for
pre-visual stress responses as indications of accidental
releases or slow leaks that might otherwise go unnoticed
until such problems become obvious and cause more
extensive damage.

Copper is essential for plant health, but can become toxic
at high concentrations. Given the relative differences in
their toxicity, plant translocation pathways and stress
responses to these metals may be sufficiently different
(7.8,9) that vegetation exposed to different contaminants
could be spectrally distinct. The relatively lower risk of
handling copper also made it feasible to incorporate a
drought treatment to explore whether metal-induced
stress could be differentiated from other environmental
stressors.

Multi-stressor pot experiment

In the summer of 2021, we conducted a field experiment in
which 147 pots of tall fescue were exposed to different
types and concentrations of metal contamination
(chromium(V1), copper, and copper + drought) ranging
between 0 -1000 mg/kg. We collected hyperspectral
images over nearly 2 months in addition to leaf-level
reflectance, and fluorescence measurements.
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Results

Minimum noise fraction shows potential
Though full analyses are notyet available, Figure 5 shows
3-band renderings of 5 hyperspectral images collected
before contamination treatments were applied (Baseline),
and at 4 time periods after exposure (1,3, 9 and 19 days
after treatment).

Images were processed using a minimumn noise fraction
(MNF) transform (10). MNF is a standard approach to
reduce noise in hyperspectral imagery (11,12).
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It can be conceptualized as a linear transform that (i)
rescales and decorrelates noise using the covariance
matrix (noise whitening) and (ii) applyinga principle
component analysis (PCA) on the output. MNF
components prioritize the best signal-to-noise ratio, rather
than information content. Though components are not
ecologically interpretable, they are ordered from best to
worstimage quality, making it easier to reliably
differentiate between useful information and noise (13).
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Figure 6. Qualitative summary of how colors appear to overlay
treatment concentrations in Figure s.

The color distributions across all tanks broadly align with
with high, moderate, and low treatment levels, as
summarized above (Fig. 6). Though analyses are ongoing
to fully quantify these changes, this visual renderingis an
important milestone that suggests metal toxicity can
induce detectable spectroscopic changes.
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