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Fully-connected neural networks are compositions of
linear functions, parameterized by learned weights,
with nonlinear activation functions such as the rectified
linear unit, or ReLU (see Figure 1). The representational
cost of a neural network can be captured by a norm on
its weights, i.e., an indicator of how “large” the
network is. The norm of the network can be viewed as
a measure of inductive bias; hence the goal of training
a neural network is to learn a function that fits the
training examples reasonably well, but whose norm is
not too large.

Functions which are bounded and compactly-
supported (i.e., “localized”) are difficult to approximate
using shallow ReLU neural networks of finite norm. For
example, not all compactly-supported piecewise linear
functions in greater than one dimension are exactly
expressible as a single-hidden layer ReLU network of
bounded norm, even if the network has infinite width
[1]. In contrast, many localized functions are exactly
expressible as finite-norm ReLU network of two or
more hidden layers (see Figure 2). This fact seems to be
consistent with the empirical finding that deeper
networks often perform better in practice; however,
the exact nature of the relationship between network
depth, width, and approximation accuracy for broader
classes of functions is not yet well understood.

Preliminary existing results indicate that for some localized
functions, the mathematical properties of interpolations
spaces can be used to bound the approximation rate of
single-layer network approximations in terms of the number
of hidden-layer units. Bounds of this nature may be useful
since they can help indicate whether reduced depth can be
mitigated by increased width, even if an exact representation
is unachievable; they also may provide insight as to how the
dimension of the input data affects approximation accuracy.
The existing bound attained with this method is loose and
does not depend on input dimension, but it may be possible
to achieve a tighter bound which includes dimensionality
using more careful mathematical analysis. It also remains to
be seen whether similar bounds can be obtained for broader
classes of localized functions, which may require more
difficult analytical techniques.

Additionally, it may be possible to provide useful bounds
on how well certain non-smooth localized functions (which
are not always representable by a finite-norm single-layer
network) can be approximated using smooth localized
functions (which are representable in this manner), and how
large the norms of these smooth approximations are. Both
the smoothness and “spikiness” of localized functions appear
to affect their representational cost using shallow networks,
but the limits of this finding are not known. For example,
smooth “radial bump” functions can be represented using
finite-norm shallow networks whose representational cost is
inversely proportional to the radius of the bump [1]. For non-
smooth localized functions which can be reasonably well-
approximated using bump functions of this type, it may be
possible to use this finding to generate similar approximation
rates.

Neural networks exhibit state-of-the-art performance
on a wide variety of pattern-recognition tasks, and can
be trained as effective anomaly detectors across
multiple problem domains. However, their
demonstrated success is largely empirical, and many of
their mathematical properties are not yet well-
understood. Improved understanding of the
approximation properties of shallow vs. deep neural
networks is relevant for developing a mathematically
rigorous theory of deep learning, and it may help guide
machine learning practitioners in their choice of model
architecture when applying deep learning to real-world
problems.
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Figure 1: architecture of a single-hidden-layer, single-output neural network.

Figure 2: illustration of localization for single- vs double-layer ReLU networks.


