Multi-scale feature prediction and signature identification for directed energy deposition
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Introduction Goal
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reduced processing routes as compared to conventional manufacturing techniques. Z step, () mm

However, the ability to define and predict these responses within the processing- EC| uati()n S Scanning speed, (V) mm/s

structure-property (PSP) relationships is not mature. In this study, we present a machine Number of layers, (n) (-)

learning (ML) approach that can be used to identify both macro and micro-scale D X P Actual Build Height Laser spot size, (D) mm
signatures of 316L stainless steel components manufactured using directed energy ~y«D+m+H h Mass flow rate, (m) g/s

deposition (DED) to enable predictive processing strategies of AM signatures. Thermal diffusivity, (a) mm? /s

Latent heat of fusion, (H) /9

Experiments
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