

Introduction

Additive manufacturing (AM) techniques provide novel opportunities for the fabrication of advanced materials and multi-functional properties of complex geometries with reduced processing routes as compared to conventional manufacturing techniques. However, the ability to define and predict these responses within the processingstructure-property (PSP) relationships is not mature. In this study, we present a machine learning (ML) approach that can be used to identify both macro and micro-scale signatures of 316L stainless steel components manufactured using directed energy deposition (DED) to enable predictive processing strategies of AM signatures.

Experiments

Varied, p, h, v, \dot{m}, z and n.

Multi-scale feature prediction and signature identification for directed energy deposition William Kunkel, Phalgun Nelaturu, Dan Thoma University of Wisconsin-Madison wkunkel@wisc.edu ETI Annual Workshop, February 8 - 9, 2023

Understand, predict, and control the PSP relationships between process parameters, dendrite arm spacing (DAS), and build height.

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award **Number(s) DE-NA0003921.**

Goal

Equations

Conclusions from regression analysis

Poster # 9

Variable	Units
Laser power, (p)	W
Hatch spacing, (h)	mm
Z step, (<i>z</i>)	mm
Scanning speed, (v)	mm/s
Number of layers, (n)	(-)
Laser spot size, (D)	mm
Mass flow rate, (\dot{m})	g/s
Thermal diffusivity, (α)	mm ² /s
Latent heat of fusion, (H)	j/g

National Nuclear Security Administration