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Problem Statement: Perform Source Term Estimation in a 

cluttered environment for an arbitrary number of radioactive point 

sources of varying activities and isotopes.

Goal: Develop an algorithm to accomplish this in real time and 

validate it with Monte Carlo simulations and hardware results.



Introduction
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Source Term Estimation (STE): 

• How many are there?

• Where are they?

• What is their activity?

• What isotope?

Cluttered Environment: Obstacles are 

present. Obstacle/terrain information is 

known or can be approximated. Example environment with obstacles 
outlined in green and radiation field due 
to 3 sources.



Applications and Motivation
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190 incidents of trafficking reported 

on the ITDB in 2019. IAEA

Lost radioactive capsule in Australia 

(25 Jan 2023) CNN

Cs-137 Sealed source recovery at 

University of Washington (2 May 

2019) energy.gov

Radiological security 

and mishandling of 

nuclear material

Trafficking, nuclear 

smuggling detection, 

and deterrence

Fukushima nuclear disaster 

Reuters

Disasters and nuclear 
verification

https://www.iaea.org/newscenter/pressreleases/iaea-database-shows-continued-incidents-of-trafficking-and-loss-of-control-of-nuclear-and-other-radioactive-material
https://www.cnn.com/2023/01/31/business/missing-radioactive-capsule-explainer-rio-tinto-intl-hnk/index.html#:~:text=State%20authorities%20in%20Western%20Australia,have%20fallen%20of%20a%20truck.&text=It's%20like%20looking%20for%20a,highway%20in%20Australia's%20biggest%20state.
https://www.energy.gov/sites/prod/files/2020/04/f73/JIT-Seattle-Cesium-Event-2019-05-02.pdf
https://www.reuters.com/article/japan-severity-idUSTKE00635720110412


Prior Work Limitations
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• Obstacles

• Source cardinality

• Single source (~83% of papers)

• Non-interacting sources (~14% of papers)

Particle Filter
• Ristic, B., Morelande, M., & Gunatilaka, A. (2010). Information driven 

search for point sources of gamma radiation. Signal Processing, 90(4), 

1225-1239.

Limitations

• No obstacle considerations

• Computationally intractable for >3 sources

• Degeneracy

Measurements here will have 2 
sources contributing

Lit review 2



Particle Filter Introduction

• A “particle” represents a 
hypothesis.
• Cardinality: number of sources

• Source locations

• Source strengths
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A “particle” is not a physical entity!



Simple Particle Filter Explanation

initialize

for each measurement 

weigh 

resample

regularize
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initialize weigh

resample regularize

Particle: larger is more likely

True source location

Measurement location



Particle Filter Challenges
Challenges:
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2. Underdetermination

3. Computation vs particle set size
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Particle 
Degeneracy



Contributions
Attenuation Kernels (Transport 
Kernels)

• Quantify how count rate will be 
attenuated from a discretized set of 
possible source locations to a discretized 
set of measurement locations.

• Preserves accuracy, improves speed

Dynamic Particle Count Adjustment

• Monitor likelihood of particle set and 
increase or decrease the number of 
particles.

• Combats degeneracy, balances 
computation speed and accuracy
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Contributions
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Continuous Particle Filter (CPF):
• Baseline from literature [1]
Discrete Particle Filter (DPF):
• Attenuation Kernels
Dynamic Discrete Particle Filter (DDPF):
• Attenuation Kernels
• Dynamic Particle Count Adjustment

[1] Ristic, B., Morelande, M., & 

Gunatilaka, A. (2010). Information 

driven search for point sources of 

gamma radiation. Signal 

Processing, 90(4), 1225-1239.



Monte Carlo Simulation Setup
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Open Street 

Maps (OSM) 

Data

Visualization of 

expected count 

rate

Boustrophedon 

Search Pattern

• 100m x 200m search area
• Building data from Open Street 

Maps
• Buildings modelled as solid 

prisms with arbitrary absorption 
coefficients.

• Measurements taken with 1 
minute dwell time.



Radiation Model

• Count measurements, 𝑧, are Poisson 
distributed with parameter 𝜆 = 𝜇 ∗ τ

• 𝑧~𝑃(𝜆)

• 𝜇 = Expected count rate (counts/s)

• 𝜏= Duration of measurement
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Exponential 
Absorption 
Law

Inverse Square Law

Sum over sources

Expected 
Background

𝜇 = 𝜇𝑏 + 

𝑠=1

𝑟
𝜙𝑠

𝑑𝑠
2 𝑒−𝛽𝑚𝑑𝑑𝑠

(Left) 2D overview of 

ray traced path

(Down) Absorption 

coefficient effect on 

count rate w/ 

distance

For CPF, this is 
computed for 
every particle at 
every likelihood 
calculation.
For DPF, this is 
computed once.



Online Calculation Using Precomputed 
Kernels
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𝜇𝑚 = 𝜙𝑠 ∗ 𝐾𝑠,𝑚



Result Notation and Terms
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Source cardinality hypothesis (how many 
sources does a particle represent)

True source location

Measurement location

Building outline

Particle: larger is more likely

1 source

2 source

3 source

N = Number of particles
R = Particle source cardinality
iter = Current measurement



Example Sim Run- Dynamic Particle Count

15

Note the changing particle 
count

• As “confidence” in 
predictions build, 
particle count 
goes down

• Particles are 
removed at 
random uniformly

• When the model suspects all its 
hypotheses are bad (i.e., likelihood 
is low), the particle count increases. 

• In this case, the count jumps to a 
large maximum value of 25,000 
particles.

• We have tuned for accuracy over 
speed in this case.

Note the regular grid the 
particles appear on! 
Those are the kernel 
locations



Example Sim Run- Dynamic Particle Count
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The particle count 
decreases by a factor 
of 1.2 as confidence 
builds again.

• When particle count 
increases, new 
particles are 
initialized with the 
same rules as when 
first initialized.
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Monte Carlo Results 
Attenuation Kernel Study

More complex models come 
with no runtime cost!!!

• On par accuracy (within 1% full scale)
• ~36x improvement in runtime without obstacles
• ~4,420x improvement in runtime for cases with obstacles



Monte Carlo Results 
Dynamic Particle Count Study
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• Reduced effect of degeneracy and low 
particle count (lower 95th percentile 
error) (𝑃95)

• Improved runtime



Hardware Results
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• Search area: 15m x 6m
• 17 obstacles

• 2 densities of concrete
• 45 measurements taken using 

Kromek Sigma-50 CsI(Tl) scintillator 
with 2-minute dwell time.

• Not all measurements were used 
in some cases

• The entire dwell time was not 
used in some cases

Ground vehicle search time-lapse with obstacles present

Note the tape marking the 
locations of the obstacles



Hardware Results 
Single source, no obstacles
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• Cs-137 @ 24.69 mCi

Results:
Spatial error: 5.75 cm (.0113%)
Strength Error: 1.04%



Hardware Results 
Single source, with obstacles
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• Co-60 @ 4.76 mCi
Results:

Spatial error: 13 cm (.059%)
Strength Error: 16%

Accuracy is worse than with Cs-137 
because of my spectrum processing 
algorithm. This will be discussed more 
in future work section



Hardware Results 
2 source, with obstacles
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• Cs-137 @ 24.69 mCi (Top Left)
• Cs-137 @ 0.152 mCi (Bottom Right)
Results:

Spatial error: 4.6 cm (.0074%)
Strength Error: <1%



Particle Filter Limitations
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• Cs-137 @ 24.69 mCi (Top Left)
• Cs-137 @ 0.152 mCi (Bottom Right)

• 162x difference in strengths:
• Like trying to hear someone’s 

indoor voice while they’re on a 
lawnmower.

• Stochastic method:
• For small particle sets, can be 

dependent on luck



Hardware Results Challenges
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Peak shift due to 
detector paralyzation

• Can we extract the relative contributions of each isotope as a scalar?
• How do we deal with shifting photopeaks and saturation?
• Currently using rudimentary peak detection tuned for Cs-137

What isotopes are there? How strong are they relative to one another? 

Full saturation



Conclusion

• Runtime and accuracy consistently outperform state of the art. 

• ~.0125% Area Ratio (Error in localization area relative to search area)

• ~36x improvement in runtime for simplest inverse-square model

• ~4,420x improvement in runtime for 1st order ray-tracing model

• Future work

• Isotopic identification and improved spectrum analysis

• Run multiple filters in parallel for different isotopes

• Full scale hardware experiments
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ETI Impact

• Hoping to do an internship this summer 
(hit me up national labs)

• Presented at IEEE SSRR 2021
• Kemp, S., & Rogers, J. (2021, October). UAV-UGV 

Teaming for Rapid Radiological Mapping. In 2021 IEEE 
International Symposium on Safety, Security, and 
Rescue Robotics (SSRR) (pp. 92-97). IEEE.

• Pending journal publication in IEEE 
Transactions on Nuclear Science

• Currently collaborating with Craig 
Bakker at PNNL
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• Jonathan Rogers and Satvik Kumar 

at Georgia Tech

• Craig Bakker and Amoret Bunn at 

PNNL 

• David Chichester at INL

• Brian Quiter at LBNL

• Paul Wilson at UW

• Yuguo Tao, Anna Erickson, and 

Mackenzie Duce at Georgia Tech

• Andrew Torgesen, Andrew 

Fishberg, and Jonathan How at MIT
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