

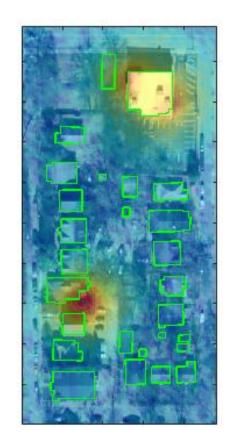
ETI Annual Workshop -- 2023

Real-Time Radiological Source Term Estimation for Multiple Sources in Cluttered Environments

S. Kemp¹, S. Kumar¹, C. Bakker², M. Duce¹, J. Rogers¹ ¹Georgia Institute of Technology, ²PNNL 9 Feb 2023

Problem Statement: Perform Source Term Estimation in a cluttered environment for an arbitrary number of radioactive point sources of varying activities and isotopes.

Goal: Develop an algorithm to accomplish this in real time and validate it with Monte Carlo simulations and hardware results.



>> Introduction

Source Term Estimation (STE):

- How many are there?
- Where are they?
- What is their activity?
- What isotope?

Cluttered Environment: Obstacles are present. Obstacle/terrain information is known or can be approximated.

Example environment with obstacles outlined in green and radiation field due to 3 sources.

Applications and Motivation

Radiological security and mishandling of nuclear material

Lost radioactive capsule in Australia (25 Jan 2023) <u>CNN</u> Cs-137 Sealed source recovery at University of Washington (2 May 2019) <u>energy.gov</u>

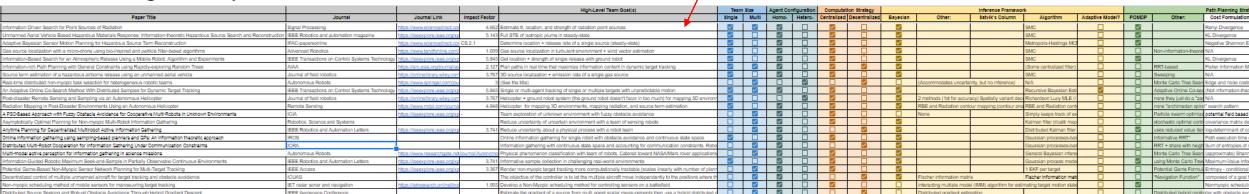
Trafficking, nuclear smuggling detection, and deterrence

190 incidents of trafficking reported on the ITDB in 2019. <u>IAEA</u>

Disasters and nuclear verification

Fukushima nuclear disaster <u>Reuters</u>

Prior Work Limitations

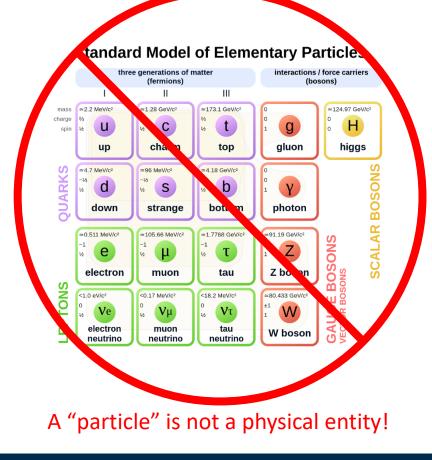

- Obstacles
- Source cardinality
 - Single source (~83% of papers)
 - Non-interacting sources (~14% of papers)

Particle Filter

 Ristic, B., Morelande, M., & Gunatilaka, A. (2010). Information driven search for point sources of gamma radiation. *Signal Processing*, *90*(4), 1225-1239.

Limitations

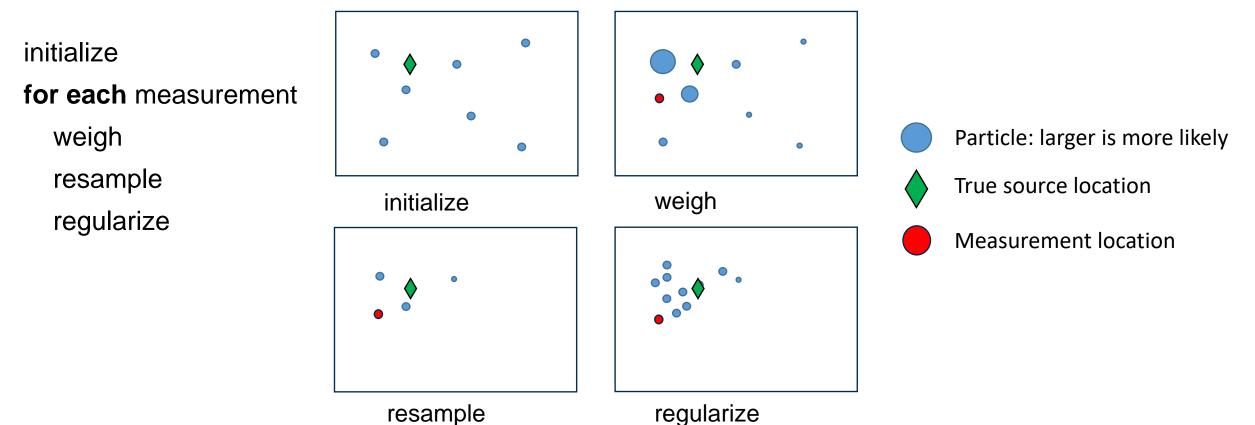
- No obstacle considerations
- Computationally intractable for >3 sources
- Degeneracy



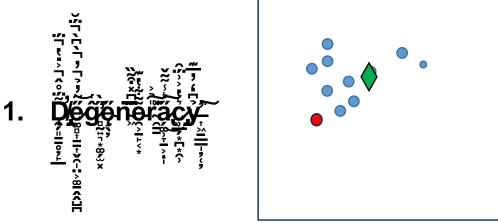
Measurements here will have 2 sources contributing

Lit review 2

Particle Filter Introduction

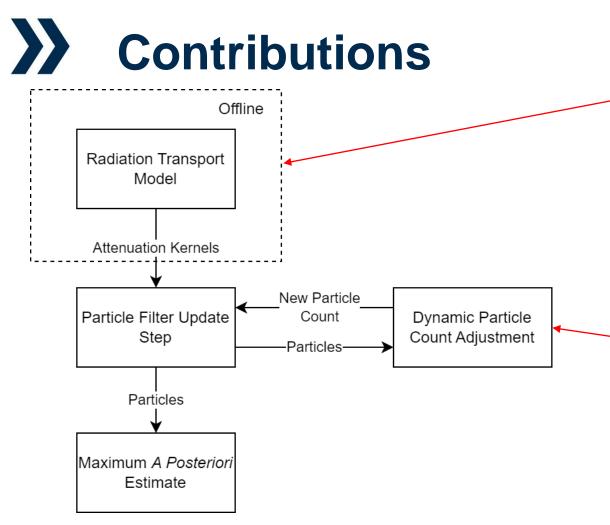

- A "particle" represents a <u>hypothesis</u>.
 - Cardinality: number of sources
 - Source locations
 - Source strengths

Simple Particle Filter Explanation



Particle Filter Challenges

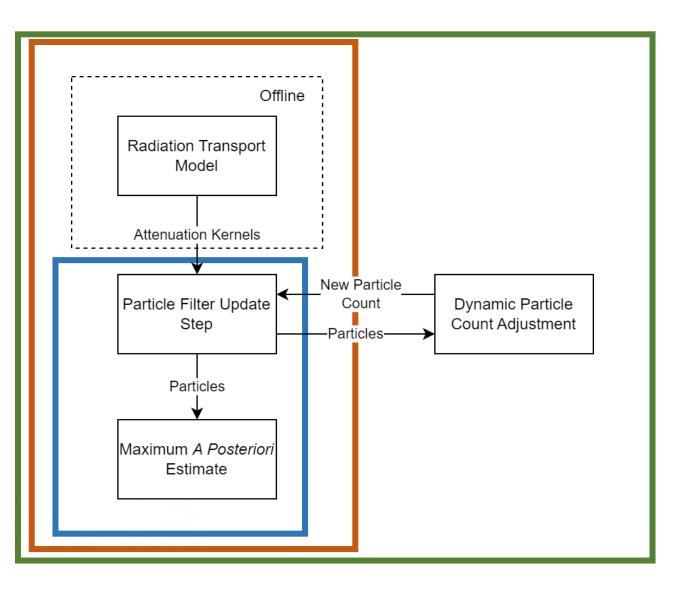
Challenges:



- 2. Underdetermination
- 3. Computation vs particle set size

- Attenuation Kernels (Transport Kernels)

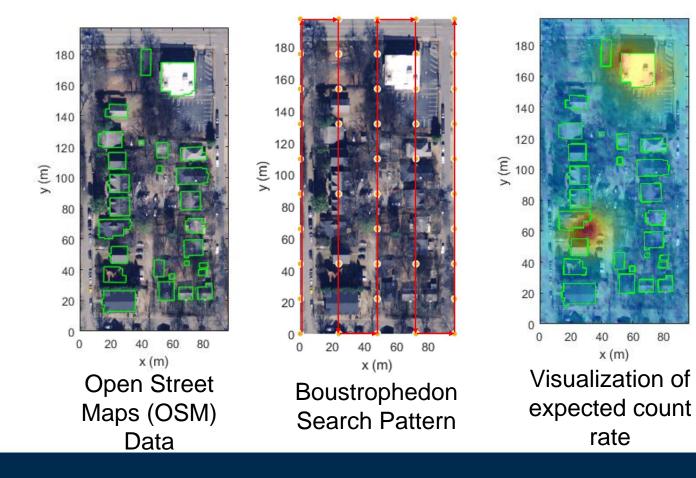
- Quantify how count rate will be attenuated from a discretized set of possible source locations to a discretized set of measurement locations.
- Preserves accuracy, improves speed


Dynamic Particle Count Adjustment

- Monitor likelihood of particle set and increase or decrease the number of particles.
- Combats degeneracy, balances computation speed and accuracy

Contributions

Continuous Particle Filter (CPF):

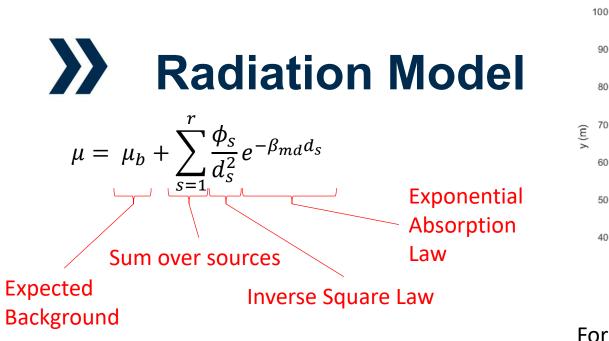

- Baseline from literature [1] **Discrete Particle Filter (DPF):**
- Attenuation Kernels

Dynamic Discrete Particle Filter (DDPF):

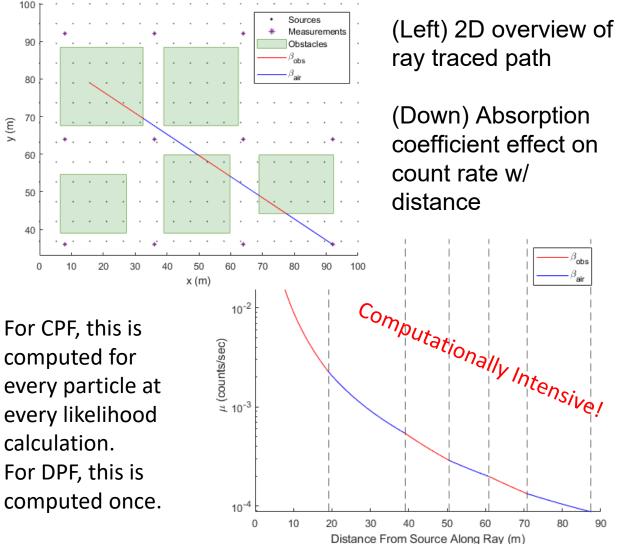
- Attenuation Kernels
- Dynamic Particle Count Adjustment

[1] Ristic, B., Morelande, M., & Gunatilaka, A. (2010). Information driven search for point sources of gamma radiation. *Signal Processing*, *90*(4), 1225-1239.

Monte Carlo Simulation Setup



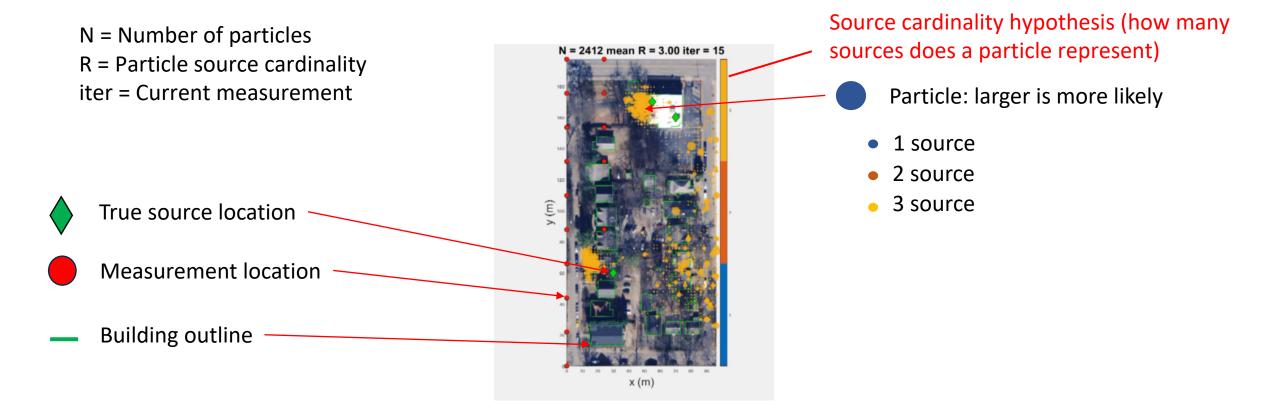
- 100m x 200m search area
- Building data from Open Street Maps
- Buildings modelled as solid prisms with arbitrary absorption coefficients.
- Measurements taken with 1 minute dwell time.



11

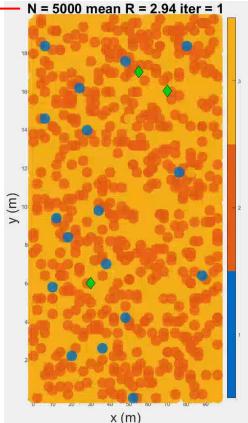
- Count measurements, z, are Poisson ulletdistributed with parameter $\lambda = \mu * \tau$
- $z \sim P(\lambda)$ •
- μ = Expected count rate (counts/s) ٠
- τ = Duration of measurement ۲

90



>> Online Calculation Using Precomputed Kernels $\mu_m = \phi_s * K_{s,m}$

Result Notation and Terms


14

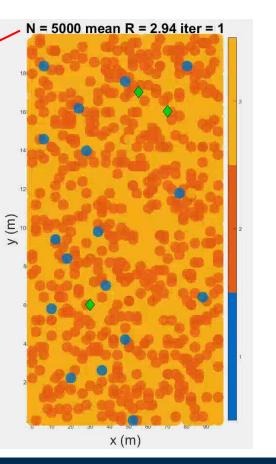
Example Sim Run- Dynamic Particle Count

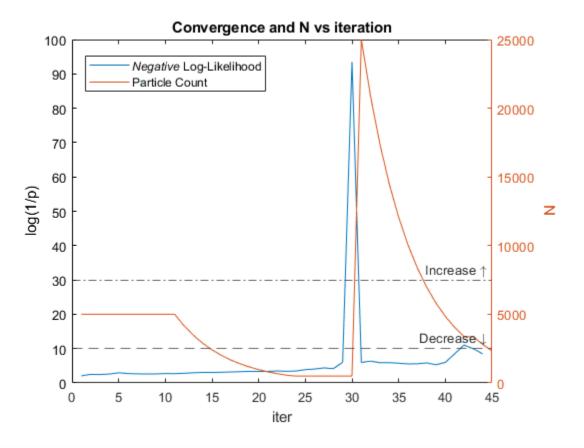
Note the changing particle — count

- As "confidence" in predictions build, particle count goes down
- Particles are removed at random uniformly

- When the model suspects all its <u>hypotheses are bad</u> (i.e., likelihood is low), the <u>particle count increases</u>.
- In this case, the count jumps to a large maximum value of 25,000 particles.
- We have tuned for accuracy over speed in this case.

Note the regular grid the particles appear on! Those are the kernel locations





Example Sim Run- Dynamic Particle Count

The particle count decreases by a factor of 1.2 as confidence builds again.

 When particle count increases, new particles are initialized with the same rules as when first initialized.

Monte Carlo Results **Attenuation Kernel Study**

Particle Filter	C	PF	DPF		
Obstacles	No	Yes	No	Yes	
\hat{r} Correct (%)	84	83.33	87.33	86	
$\mu(\epsilon_{\rm pos})$ (m)	4.736	4.494	5.592	5.259	
$\sigma(\epsilon_{\rm pos})$ (m)	4.357	5.121	7.094	6.469	
$\mu(\epsilon_{\omega})$ (counts/s)	736.4	488.8	414.2	427.3	
$\sigma(\epsilon_{\varphi})$ (counts/s)	2534	2392	2247	2653	
Avg. Runtime (s)	1730	31,910	13.5	12.9	
Std. Dev. Runtime (s)	51.08	5070	1.407	1.147	

- On par accuracy (within 1% full scale)
 ~36x improvement in runtime without obstacles
 - ~4,420x improvement in runtime for cases with obstacles

More complex models come with no runtime cost!!!

Monte Carlo Results Dynamic Particle Count Study

- Reduced effect of degeneracy and low particle count (lower 95th percentile error) (P₉₅)
- Improved runtime

Particle Filter							
	2						
\hat{r} Correct (%)	98.67	92.67	85.33	76	60.67	54.67	47.33
$\mu(\epsilon_{\rm pos})$ (m)	2.509	3.579	4.492	5.514	6.45	6.593	8.373
$\sigma(\epsilon_{\rm pos})$ (m)	3.445	3.87	3.465	4.069	4.943	5.049	5.774
$P_{95}(\epsilon_{\rm pos})$ (m)	5.44	11.08	11.41	13.9	15.88	13.22	20.3
$\mu(\epsilon_{\varphi})$ (counts/s)							
$\sigma(\epsilon_{\varphi})$ (counts/s)	1688	2139	2462	2628	2770	3142	3875
Mean Runtime (s)	75.46	76.57	77.87	79.01	79.95	82.82	83.05
Median Runtime (s)	77.25	78	79.1	79.9	81.15	83.99	83.81

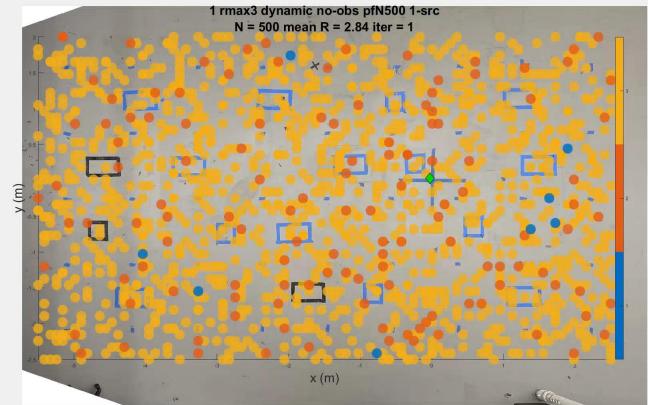
Particle Filter	DDPF $(N_0 = 5,000)$						
r_{\max}	2	3	4	5	6	7	8
\hat{r} Correct (%)							
$\mu(\epsilon_{\rm pos})$ (m)	2.636	3.76	4.454	5.33	5.92	6.091	7.471
$\sigma(\epsilon_{\rm pos})$ (m)							
$P_{95}(\epsilon_{\text{pos}})$ (m)	6.115	10.56	10.74	12.66	12.41	12.19	14.68
$\mu(\epsilon_{\varphi})$ (counts/s)	304.7	348	298.5	460.7	833.2	814.8	1170
$\sigma(\epsilon_{\varphi})$ (counts/s)	2090	2229	2264	2632	2648	3119	3539
Mean Runtime (s)							
Median Runtime (s)	27.07	26.95	27.39	27.98	29.11	36.3	42.11

Hardware Results

Note the tape marking the locations of the obstacles

- Search area: 15m x 6m
- 17 obstacles
 - 2 densities of concrete
- 45 measurements taken using Kromek Sigma-50 CsI(Tl) scintillator with 2-minute dwell time.
 - Not all measurements were used in some cases
 - The entire dwell time was not used in some cases

Ground vehicle search time-lapse with obstacles present



Hardware Results Single source, no obstacles

• Cs-137 @ 24.69 mCi

Results:

Spatial error: 5.75 cm (.0113%) Strength Error: 1.04%

Hardware Results Single source, with obstacles

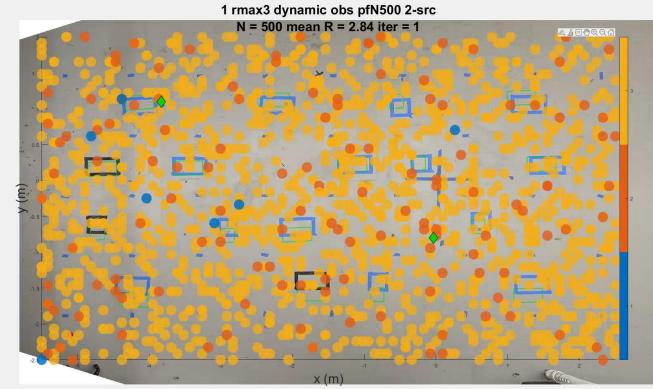
Co-60 @ 4.76 mCi
 Results:

Spatial error: 13 cm (.059%) Strength Error: 16%

Accuracy is worse than with Cs-137 because of my spectrum processing algorithm. This will be discussed more in future work section N = 5000 mean R = 2.94 iter = 1

x(m)

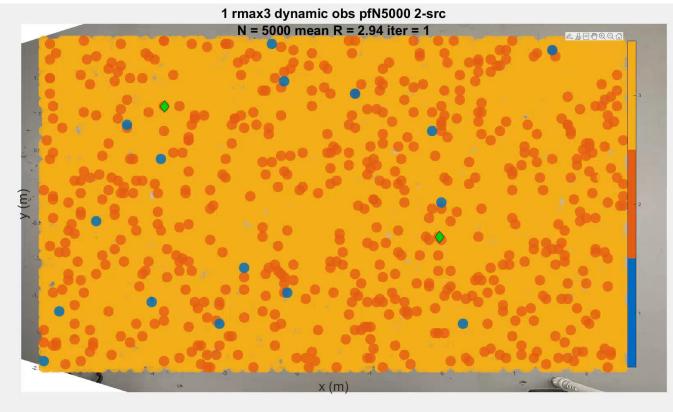
1 rmax3 dynamic obs pfN5000 1-src


Intional Nuclear Security Administration

Hardware Results 2 source, with obstacles

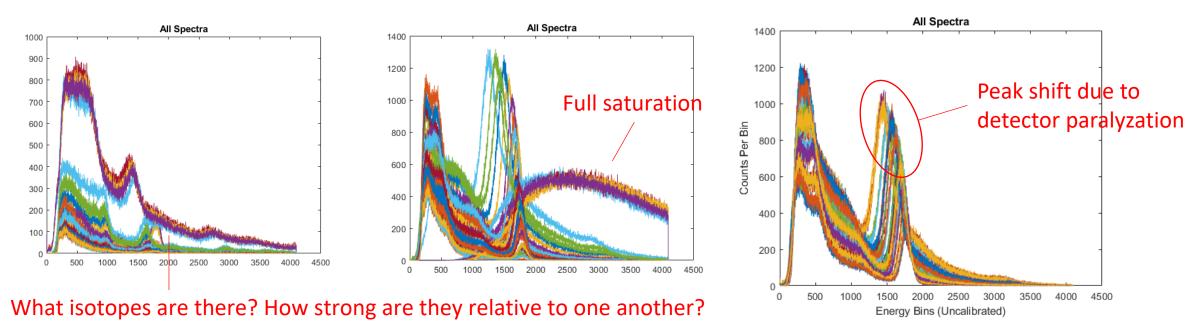
- Cs-137 @ 24.69 mCi (Top Left)
- Cs-137 @ 0.152 mCi (Bottom Right) Results:

Spatial error: 4.6 cm (.0074%) Strength Error: <1%



Particle Filter Limitations

- Cs-137 @ 24.69 mCi (Top Left)
- Cs-137 @ 0.152 mCi (Bottom Right)
- 162x difference in strengths:
 - Like trying to hear someone's indoor voice while they're on a lawnmower.
- Stochastic method:
 - For small particle sets, can be dependent on luck



Hardware Results Challenges

- Can we extract the relative contributions of each isotope as a scalar?
- How do we deal with shifting photopeaks and saturation?
- Currently using rudimentary peak detection tuned for Cs-137

Conclusion

- Runtime and accuracy consistently outperform state of the art.
 - ~.0125% Area Ratio (Error in localization area relative to search area)
 - ~36x improvement in runtime for simplest inverse-square model
 - ~4,420x improvement in runtime for 1st order ray-tracing model
- Future work
 - Isotopic identification and improved spectrum analysis
 - Run multiple filters in parallel for different isotopes
 - Full scale hardware experiments

ETI Impact

- Hoping to do an internship this summer (hit me up national labs)
- Presented at IEEE SSRR 2021
 - Kemp, S., & Rogers, J. (2021, October). UAV-UGV Teaming for Rapid Radiological Mapping. In 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 92-97). IEEE.
- Pending journal publication in IEEE Transactions on Nuclear Science
- Currently collaborating with Craig Bakker at PNNL

Connections, mentors, collaborators, etc.

- Jonathan Rogers and Satvik Kumar at Georgia Tech
- Craig Bakker and Amoret Bunn at PNNL
- David Chichester at INL
- Brian Quiter at LBNL
- Paul Wilson at UW
- Yuguo Tao, Anna Erickson, and Mackenzie Duce at Georgia Tech
- Andrew Torgesen, Andrew
 Fishberg, and Jonathan How at MIT

ACKNOWLEDGEMENTS

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

