

The Influence of Rare Earth Metal Cations on the Coordination, Aggregation, and Transport of Trivalent Uranium in the LiCl-KCl Eutectic

Jacob Tellez Advisors: Dr. Jenifer Shafer and Dr. David Wu Colorado School of Mines jtellez@mines.edu

Abstract:

Both on-line and post-processing electrorefining methods for used nuclear fuel propose the use of chloride-based molten salts containing a variety of fission product species which complicates the coordination environment and, consequently, the associated transport properties of ion species. The high-temperature, radioactive nature of dissolved fuel complicates experimental investigations, making classical molecular dynamics a useful tool in understanding the thermophysical and transport properties alongside ionic behavior at the atomic scale. This work employs a polarizable Born-Mayer-Huggins potential within CP2K to investigate the coordination environment and its influence over aggregation and transport properties of U³⁺ in the presence of fission products such as $Fp^{3+} = Sc^{3+}$, Y^{3+} , La³⁺, and Tb³⁺ at 5 mol% MCl₃ and 773 K.

Fission products influence the uranium coordination environment and aggregation trends in several ways. Evaluation of M^{3+} -Cl⁻ coordination number distributions reveals that the addition of Fp³⁺ reduces the commonality of the five and six coordinate UClx^{3-X} complexes. Contrarily, U³⁺ induces negligible effect on the strict, orthogonal coordination of Sc³⁺, Y³⁺, and Tb³⁺, but reduces the tendency of La³⁺ to form the CN = 7 complex anion. Meanwhile, all M³⁺ cations coordinate with each other via shared Cl⁻ anions to form homogeneous aggregates; however, they show preferential coordination to K⁺ by the same anion sharing mechanism. Further analysis reveals that cations loosely form heterogeneous aggregates comprising of solvent bridged complex anions (MClx^{3-X}) where K⁺ acts as the primary bridging cation. The addition of small trivalent cations (Sc³⁺, Y³⁺, and Tb³⁺) breaks down both the homogeneous and heterogeneous aggregates. The effects of coordination and aggregation on ion transport are studied through the impacts on the viscosity and a spatially decomposed diffusion coefficient.