

Insights into the Coordination, Aggregation, and Transport of Trivalent Metals in the LiCI-KCI Eutectic

Jacob Tellez

Colorado School of Mines

ETI Annual Workshop

February 20 - 21, 2024, Golden, CO

Consortium for ENABLING TECHNOLOGIES & INNOVATION

Motivation – The Potential of UNF

- Used nuclear fuel (UNF) contains useful elements
 - Fuel isotopes (U/Pu)
 - Rare earth elements (REEs)
 - Neutron absorbing fission products
 - High radiotoxicity isotopes
- Isolation of these species improves the fuel cycle
 - Improved utilization of fuel isotopes
 - Collection of REEs
 - Reduced radiotoxicity timeline for fuel wastes

Pyroprocessing – An Overview

- Processing method that could allow for online reprocessing in certain reactors
 - Chloride salts are the most prominent design
 - Monitoring is critical for process security
 - Salts are atypical compared with aqueous systems
- Promising method for handling UNF, but requires knowledge of salt properties
 - Thermophysical and transport properties
 - Liquid structures networks involving uranium
- Primary components of the electroplating process are:
 - Diffusion of ion species
 - Electron transfer efficiency at the electrode

Introductic

The Critical Role of Coordination

- Both the diffusion regime and electron transfer of ions rely heavily on the coordination environment
 - Diffusion can be impacted by complexing anions or by extended network interactions
 - Electron transfer is influenced by the strength of coordination to other ions
- Experiments probing coordination can be challenging to conduct
 - Corrosive salts
 - High temperatures (500 700 C)
 - Radioactive species
- Molecular dynamics (MD) can help predict salt properties and nano-scale behaviors of systems that have not been experimentally tested.

Introductio

Prior Efforts in Chloride Salt Coordination Chemistry

- Experimental Investigations of MCI_x-LiCI-KCI salts
 - Electrochemical properties (Redox potentials and diffusion coefficients)
 - Thermodynamic properties
 - Limited Coordination by spectral techniques (Raman, UV-Vis, EXAFS)
- Computational Investigations by Molecular Dynamics
 - Basics of coordination in ternary salts
 - Basics of transport and thermodynamic properties in ternary salts
 - Effects of temperature and MCI₃ concentration on transport properties and polymer sizes
 - Limited calculations of Raman spectra
- Knowledge Gaps
 - Detailed analysis of M³⁺ coordination environment in LiCI-KCI
 - Impacts of fission products on U³⁺ coordination environment in quaternary systems

Project Outline

Analysis with Classical Molecular Dynamics

- Investigating the systems in ways that can and cannot be probed experimentally
 - Transport properties
 - Thermodynamic properties
 - Basic coordination environment
- Dynamics of coordination
 - Ion coordination times
 - Partitioned contributions to diffusion
 - Inter/intra species aggregation
 - Aggregate size distributions

Highlighting the Role of Many-Body Effects

• U^{3+} diffuses faster than Sc³⁺ in 5 mol% MCl₃ systems

System	M ³⁺ Self-Diffusion Coefficient	Viscosity	CN _{M-Cl}
	$[10^{-5} \text{ cm}2/\text{s}]$	[mPa-s]	[-]
$5 \text{ mol}\% \text{ UCl}_3$	0.91	2.46	6.4
5 mol% ScCl ₃	0.73	2.15	5.6

- Prior work suggests prevalent monomer species in both systems
 - Some dimer species in UCl₃ systems
 - Aggregates may have weak influence over diffusion at this concentration
 - U³⁺ aggregates more readily as MCl₃ concentration increases
- Number of coordinating Cl⁻ is higher for U³⁺ than Sc³⁺
 - Suggests that diffusion is influenced by inner and outer sphere effects

Principles of Coordination in 5 mol% MCl₃

- Ions exhibit varied coordination spheres
 - U^{3+} maintains a broad set of coordination numbers ($CN_{M-CI} = 6, 7, and 8$)
 - Sc³⁺ remains octahedral

Cation Aggregation in 5 mol% MCl₃

- Systems remain monomeric by anion sharing
- Considering solvent cation coordination generates system-sized aggregates
- N-mers formed by complex anions remain short-lived

Parameter		5 mol% UCl ₃	5 mol% ScCl ₃
Average CN _{M-Cl}	[-]	6.4	5.6
Aggregate Size [Cl Sharing]	[-]	1.2	1.0
Aggregate Size [Solvent Sharing]	[-]	57.0	36.7
Activation Energy ($E_a - M^{3+}$ -Cl ⁻)	[KT]	4.32	7.34
Activation Energy ($E_a - M^{3+}-M^{3+}$)	[KT]	1.48	1.47
Activation Energy ($E_a - M^{3+}-K^+$)	[KT]	1.28	1.48
Activation Energy ($E_a - M^{3+}-Li^+$)	[KT]	1.15	1.06

Consequences of the M³⁺ Coordination Environment

- Lifetime of the complex anion controls diffusion more than the weak aggregation at 5 mol% MCl₃
 - Diffusion coefficients of long-lived species are suppressed
 - System viscosities exhibit minor reduction with smaller aggregates

Parameter		$5 \text{ mol}\% \text{ UCl}_3$	5 mol% ScCl ₃
M ³⁺ Self-Diffusion Coefficient	$[10^{-5} \text{ cm}2/\text{s}]$	0.91	0.73
Average CN _{M-Cl}	[-]	6.4	5.6
M-Cl Coordination Time	[ps]	14	118
Induced Cl ⁻ Dipole	[D]	0.52	0.68
Viscosity	[mPa-s]	2.46	2.15
Aggregate Size [Cl Sharing]	[-]	1.2	1.0
Aggregate Size [Solvent Sharing]	[-]	57.0	36.7

Concluding Remarks

- Both U³⁺ and Sc³⁺ preferentially coordinate with K⁺ by Cl⁻ sharing
 - Cl⁻ sharing interactions between Sc³⁺-Sc³⁺ are particularly rare
 - Preferential K⁺ coordination driven by poor ability of K⁺ to polarize Cl⁻
- Weaker polarization ability of U³⁺ leads to short-lived complex anions, allowing U³⁺ to diffuse independently of Cl⁻, compared with long-lived Sc³⁺ species
 - U³⁺ diffuses faster than Sc³⁺
- Weakly interacting network has little impact on transport properties at this concentration

Future Work

- Seeking to complete work with other fission product cations
- Extending analysis capabilities
- Integrating experimental data sets into validation of calculations

ETI Impact

National Laboratory Collaboration

Pacific Northwest National Laboratory

Internships

- Nicole Hege PNNL
- Jacob Tellez PNNL

ACKNOWLEDGEMENTS

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

