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How can we build Al models to detect the transfer of nuclear material? @TI

« Traditional methods for tracking nuclear
material require the time-consuming
manual analysis of measurements

« Use transfer measurements collected
around the Multi-Informatics for Nuclear
Operating Scenarios (MINOS) tested at
Oak Ridge National Laboratory (ORNL)

« Shielded radiological material transfers:
* Byproducts
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Mission Relevance (ETI

« Goal: Detect the transportation of shielded radiological material by identifying
and characterizing radiation signatures
* Is a nuclear material transfer occurring?
« What kind of material is it?
How much material is it?

« Main Objective: How can Semi-Supervised Machine Learning (SSML) and/or
Self-Supervised Learning (SSL) extract information from both unlabeled and
labeled data for application in nuclear nonproliferation?

* Impact: This research establishes a methodology enabling radiation monitoring
In data-rich, label-poor environments
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Overview: Contrastive Machine Learning @TI

The contrastive framework has four
components:

« Data augmentation — transforms
samples using a set of augmentation
types/rules

« Base encoder — encodes
representations

 Projection head — casts final shape for
measuring similarity and calculating loss

« Contrastive loss function —
maximizes agreement between positive
(similar) samples
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How can gamma spectra be augmented? @TI
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« Given an instance s, apply a transform 7 € 7 to get an augmented instance §
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« Applied augmentations do not obscure labeling information needed for
classification (i.e. label-invariant)
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Contrastive models can distinguish between material transfers. Q@TI

Balanced Accuracy = 80.30%

* Encoder is contrastively trained on 100

68,124 weakly anomalous,
unlabeled spectra

* A linear classifier is trained on 52
labeled spectra

 This linear classifier beats Scikit-
Learn’s toolbox

Supervised models could only train on 52
labeled spectra
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The model detects some transfer types better than

Byproduct Subclasses
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What is the model learning? @TI

» Integrated Gradient can help connect _— Spectrs B
detection to spectral features 08 BB Optimized Representations

* A higher importance means more &
influence on final classification decision 006

« Some patterns might be unrealistic, but §’04
they mimic regions of interest k2

- Learned information from unlabeled data o] H.
IS embedded across principal components
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How should scarce labeled data be allocated for training? @TI

« Semi-supervised contrastive learning regularizes representations to the classification tasks
* The classifier needs labeled data for supervised learning

« If labeled data is noisy, more training data does not necessarily mean higher detection accuracy
« If labeled data is limited, training the classifier should be prioritized

Representation Model
0.00% 10.00% 20.00% 30.00% 40.00%
10.00% | 75.651 72.827 72977 76.185  75.496
20.00% 77.1 T76.871 T76.795 75.575 -
Classifier 30.00% | 75.039 = 77.863 7542 - -
40.00% | 78.398  78.932 - - -
50.00% | 77.253 - - - -
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How long should hyperparameter optimization be run?

(B

The answer depends on time, computational resources, model complexity, and data quality

No systematic relationship between hyperparameters and accuracy is observed

Independent hyperopt sequences quickly converge, but not to the same level

Learning Rate
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Conclusion Q@TI

Is there value in using unlabeled data for detection tasks?
* Yes! Information in unlabeled data helps SSML outperform SL techniques.

How can contrastive learning be efficiently used with radiation spectra for material transfer
detection?

« By using augmentations specifically designed for radiation detection principles.

« Classifiers built on contrastively trained representations achieve up to 80.30% balanced
accuracy.

How can a model be evaluated for explainability?

« PCA and Integrated Gradients suggest relevant pattern recognition for contrastive models.
How can scarce labeled data be effectively allocated to training tasks?

 When labeled data are limited, prioritize classifier training.

When is a contrastive model sufficiently optimized?

« Maximally achieved accuracy quickly converges but must be found empirically.
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ETI Impact (ETI

NS

What is the impact of the ETI on your development?

« Conferences: 2023 INMM & ESARDA Joint Annual Meeting, ETI workshops, University
Program Reviews

* Internship at ORNL

 NA-22 funded project on robust data analytics for simulated environmental samples
« Conferences: Conference on Data Analytics (CoDA), ORNL Al Expo

Personnel transitions: (1/8/2024,; Staff Scientist) Nonproliferation Data Scientist at ORNL

Technology transitions
- There is an active research interest in leveraging unlabeled or analogous datasets to
enhance rare or limited labeled datasets (LDRD on limited data across modalities)

Thank you to...

. Advisor: Paul Wilson

. Mentor: Ken Dayman

. MINOS Collaboration: Dan Archer, Michael Willis, Andrew Nicholson, and James Ghawaly
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