

### **Contrastive Machine Learning and Hyperparameter Optimization for Detecting Nuclear Material Transfers**

Jordan Stomps

University of Wisconsin-Madison

### **ETI Annual Workshop**

February 20 – 21, 2024, Golden, CO





ENABLING TECHNOLOGIES & INNOVATION





- Traditional methods for tracking nuclear material require the time-consuming manual analysis of measurements
- Use transfer measurements collected around the Multi-Informatics for Nuclear Operating Scenarios (MINOS) tested at Oak Ridge National Laboratory (ORNL)
- Shielded radiological material transfers:
  - Byproducts
    - <sup>225</sup>Ac
    - Activated Metals
    - Spent Fuel
  - Nuclear Material
    - Fresh Cm
    - <sup>252</sup>Cf
    - Fresh Np
    - Irradiated Np



**MINOS Sensor Map** 





## **Mission Relevance**



- **Goal:** Detect the transportation of shielded radiological material by identifying and characterizing radiation signatures
  - Is a nuclear material transfer occurring?
  - What kind of material is it?
  - How much material is it?
- Main Objective: How can Semi-Supervised Machine Learning (SSML) and/or Self-Supervised Learning (SSL) extract information from both unlabeled and labeled data for application in nuclear nonproliferation?
- Impact: This research establishes a methodology enabling radiation monitoring in data-rich, label-poor environments









The contrastive framework has four components:

- Data augmentation transforms samples using a set of augmentation types/rules
- **Base encoder** encodes representations
- **Projection head** casts final shape for measuring similarity and calculating loss
- Contrastive loss function maximizes agreement between positive (similar) samples







## How can gamma spectra be augmented?

Given an instance s, apply a transform  $\tau \in \mathcal{T}$  to get an augmented instance  $\tilde{s}$ 

•











6

### Contrastive models can distinguish between material transfers.

- Encoder is contrastively trained on 68,124 weakly anomalous, unlabeled spectra
- A linear classifier is trained on 52 labeled spectra
- This linear classifier beats Scikit-Learn's toolbox
  - Supervised models could only train on 52
    labeled spectra





#### The model detects some transfer types better than others.









## What is the model learning?

**ETI** 

- Integrated Gradient can help connect detection to spectral features
- A higher importance means more influence on final classification decision
- Some patterns might be unrealistic, but they mimic regions of interest
- Learned information from unlabeled data is embedded across principal components





#### How should scarce labeled data be allocated for training?



- Semi-supervised contrastive learning regularizes representations to the classification tasks
- The classifier needs labeled data for supervised learning
- If labeled data is noisy, more training data does not necessarily mean higher detection accuracy
- If labeled data is limited, training the classifier should be prioritized

| Average Accuracy |        | Representation Model |        |        |        |        |
|------------------|--------|----------------------|--------|--------|--------|--------|
|                  |        | 0.00%                | 10.00% | 20.00% | 30.00% | 40.00% |
|                  | 10.00% | 75.651               | 72.827 | 72.977 | 76.185 | 75.496 |
|                  | 20.00% | 77.1                 | 76.871 | 76.795 | 75.575 | -      |
| Classifier       | 30.00% | 75.039               | 77.863 | 75.42  | -      | -      |
|                  | 40.00% | 78.398               | 78.932 | -      | -      | -      |
|                  | 50.00% | 77.253               | -      | -      | -      | -      |



### How long should hyperparameter optimization be run?



- The answer depends on time, computational resources, model complexity, and data quality
- No systematic relationship between hyperparameters and accuracy is observed
- Independent hyperopt sequences quickly converge, but not to the same level





10

## Conclusion



#### Is there value in using unlabeled data for detection tasks?

• Yes! Information in unlabeled data helps SSML outperform SL techniques.

# How can contrastive learning be efficiently used with radiation spectra for material transfer detection?

- By using augmentations specifically designed for radiation detection principles.
- Classifiers built on contrastively trained representations achieve up to 80.30% balanced accuracy.

#### How can a model be evaluated for explainability?

• PCA and Integrated Gradients suggest relevant pattern recognition for contrastive models.

#### How can scarce labeled data be effectively allocated to training tasks?

• When labeled data are limited, prioritize classifier training.

#### When is a contrastive model sufficiently optimized?

• Maximally achieved accuracy quickly converges but must be found empirically.





## **ETI Impact**



- What is the impact of the ETI on your development?
  - Conferences: 2023 INMM & ESARDA Joint Annual Meeting, ETI workshops, University Program Reviews
  - Internship at ORNL
    - NA-22 funded project on robust data analytics for simulated environmental samples
    - Conferences: Conference on Data Analytics (CoDA), ORNL AI Expo
- Personnel transitions: (1/8/2024; Staff Scientist) Nonproliferation Data Scientist at ORNL
- Technology transitions
  - There is an active research interest in leveraging unlabeled or analogous datasets to enhance rare or limited labeled datasets (LDRD on limited data across modalities)
- Thank you to...
  - Advisor: Paul Wilson
  - Mentor: Ken Dayman
  - MINOS Collaboration: Dan Archer, Michael Willis, Andrew Nicholson, and James Ghawaly





## ACKNOWLEDGEMENTS

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

