

Improvements to Near-Real-Time Rocket Detection Transfer Learning Model

Sarah Popenhagen, Milton Garcés

University of Hawai'i at Mānoa

ETI Annual Workshop

February 20 - 21, 2024, Golden, CO

Introduction and Motivation

- Aggregate, curate, and annotate a dataset of rocket launch audio recordings from smartphones
- Use the dataset to train machine learning models to detect rocket launch signatures in audio data and evaluate its performance
- End goal of reliable, accurate near-real-time detection of ignition and launch signatures on mobile platforms
- Since UPR 2023, we've been focusing on improving and automating alignment in the dataset due to the increasing resource cost of manual alignment checks as the dataset grows

Mission Relevance

ETI

- The ability to detect rocket launches quickly and accurately is valuable for monitoring and nonproliferation efforts
- Opportunity to collect data in much larger quantities than in the past due to increasing prevalence of launches

Source: United Nations Office for Outer Space Affairs, Online Index of Objects Launched into Outer Space (2023) Note: When an object is launched by a country on behalf of another one, it is attributed to the latter.

OurWorldInData.org/space-exploration-satellites • CC BY

Data Collection

	2022 dataset	2024 dataset
Make of phones:	All Android	All Android
Sampling rate:	800Hz	800Hz
Number of launches:	66	180
Number of recordings:	212	801
Most common type of rocket:	SpaceX Falcon 9	SpaceX Falcon 9
Other rocket types:	ULA Atlas V, SpaceX Falcon Heavy	ULA Atlas V, SpaceX Falcon Heavy, SLS B1 (Artemis), Terran 1, ULA Delta Heavy

Transfer Learning with YAMNet

- Transfer learning uses the output of one model (YAMNet) as the input of another model (rocket detection model)
- YAMNet:
 - Deep neural network
 - Pre-trained for 521 classes of audio events
 - Classifies 16kHz audio in 0.96s
 increments
 - Outputs **embeddings**, which are then used by the rocket detection model to make **classifications**

Pre-2024 Alignment Process

- Estimate the earliest possible time of arrival, then peak select from the following 3 minutes
- Problems:
- Reported launch time isn't always accurate
- Results are sometimes unrealistic
- Manual verification is necessary
- Varying peak selection method (cross-correlation, etc.) has minimal effects

New Alignment Process

Mean metrics over 25 random training set/test set splits

8

Results

Conclusion

- Issue with accuracy decreasing with distance appears to be entirely negated by improved alignment, supporting our hypothesis that many of the long-range samples were previously mislabeled
- The model's already very low false positive rate decreased even further, from 0.7% to 0.023%
- The combination of the rapid growth of the dataset and the new alignment strategy significantly improved long-range detection, resulting in a dramatic decrease in the overall false negative rate (25% \rightarrow 0.37%)
- 99.63% mean true positive rate over 25 iterations

Near future:

- Continued collection, aggregation, and curation of the dataset
- Training against other infrasound signals using data collected in collaboration with INL and NNSS
- Deployment of updated model on phones near Cape Canaveral
- Further out:
 - Narrowing in on the ignition signature
 - Investigating feasibility of trajectory modeling, rocket type classification, etc.
- ETI Impact:
 - Continued collaboration with LANL on propagation modeling
 - Internship with INL last summer

ACKNOWLEGEMENTS

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

