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• Laser Powder Bed Fusion can print 
complex high-quality parts.

• EOS M290 has over 100 process 
parameters to control.

• Fast cooling rate (106 K/s) creates fine 
microstructure.

• LPBF has a handful of identified 
defect signatures.

a) T. DebRoy et al., Prog. Mater. Sci. 92 (2018) 112–224.

b) R. Li, et al., Int. J. Adv. Manuf. Technol. 59 (2012) 1025–1035. 

c) W.E. King, et al., J. Mater. Process. Technol. 214 (2014) 2915–2925. 

d) X. Yan, et al., Mater. Sci. Eng. A. 789 (2020) 139615. 
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Introduction and Motivation

Signature
Frequency 

(kHz)
Material

Detection 

Method
Source

Crack 100 Al6Mn2Ce

Structure-

borne 

Acoustics

Seleznev et. al., 2022

Conduction 

Mode
0-20

316L SS, 

Bronze, 

Inconel 

718

Airborne 

Acoustics

Drissi-Daoudi, et. al., 

2022

Lack of Fusion 0-20

316L SS, 

Bronze, 

Inconel 

718

Airborne 

Acoustics

Drissi-Daoudi, et. al., 

2022

Keyhole 43.8 Ti6Al4V Optical (X-ray) Khairallah, et. al., 2021

Machine 

Noise
0.5 304 SS Airborne Ye, et. al., 2018

Material 

Resonance
1.16 304 SS Airborne Ye, et. al., 2018
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Introduction and Motivation

1. Process and microstructure 
create acoustic signatures

Acoustic Structure Relationship

2. Identify microstructure, defects, or 
properties from acoustic signatures

3. Change process conditions 
to tailor properties

Processing-Structure Relationship

4. Verify desired properties 
from new acoustic signature

Acoustic-Processing Relationship
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Mission Relevance

N. Cannon, et al., J Radioanal Nucl Chem 331, Lu, C., et al., Nat Commun 7, 13564 (2016). 

• Laser powder bed fusion has been shown to 
have a higher risk to nuclear nonproliferation 
than other additive manufacturing methods.

• CoCrFeMnNi HEA has shown resistance to 
void swelling.



Open Porosity Low Throughput Window

LOF Keyhole

242 hex nuts specimens:

- Different processing conditions

- High throughput characterization

- Density and Hardness Measured

- Rapid identification of processing bounds

1 cm
3.175 mm 

3.0 mm 

4.402 mm 
A. Agrawal et al, Mat. Sci. & Eng. A 793 (2020) 139841

High Throughput Experiments
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High Strain Rate Experiments

High strain rate experiments conducted at Los Alamos National Laboratory measured the spall 
strength of the CoCrFeMnNi HEA across seven processing conditions.

V.K. Euser, et. al., Materialia, 33 (2024)
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High Strain Rate Experiments

Spall response dominated by presence of cracks.

V.K. Euser, et. al., Materialia, 33 (2024)



Ultimate Tensile Strength changes by 4%

Yield Strength changes by 10%

Spall Strength changes by 30%
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High Strain Rate Experiments
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Acoustic Signatures
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Acoustic Signatures
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Machine Learning

• Random Forest Model from scikit-learn 
package using 20 trees with no 
bootstrapping.

• 50% of data used for training. Each 
processing condition is represented in each 
dataset.

• Chebyshev polynomials (15 terms) applied 
to FFT to reduce data size. 

• The predictions from 5 clips of each sample 
are averaged to get the final prediction for 
each samples.
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Technical Work and Results

The Random Forest Algorithm can differentiate high defect 
parts with 82% accuracy.

0.11%
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Technical Work and Results

The Random Forest Algorithm can differentiate between high 
and low spall strength with no errors.

1.9 GPa



RMSE = 17.9 MPa
R2 = 0.76
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Future Experiments
Yield Strength 

(MPa)



Conclusion

1. Process and microstructure 
create acoustic signatures
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2. Identify properties and 
defects from acoustic signatures

3. Change processing conditions 
to tailor properties
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Conclusion

Acoustic Structure Relationship

Processing-Structure Relationship

Acoustic-Processing Relationship

2. Identify microstructure, defects, or 
properties from acoustic signatures

1. Process and microstructure 
create acoustic signatures

4. Verify desired properties 
from new acoustic signatures

3. Change process conditions 
to tailor properties
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ETI Impact and Future Work

• What is the impact of the ETI on your development?

• This work was presented at MS&T 2023 in Columbus, OH.

• Personnel transitions:

• I will be conducting a summer internship at LLNL in Summer 2024 studying the physical 
mechanisms of acoustic signatures in LPBF.

• Technology transitions:

• The plate impact experiments were conducted in conjunction with Saryu Fensin and Ginny 
Euser at Los Alamos National Laboratory.

• Future Work:

• Future experiments will explore acoustic signatures up to 100 kHz to look for signatures of 
discrete cracking events.

• Acoustic signatures of other materials will be analyzed to determine material dependent 
acoustic signatures.
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