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Introduction and Motivation

• CNC machining is a very important part of the manufacturing industry

• Advanced manufacturing technique

• Allows for complex parts with tight tolerances

• Makerspaces have grown in popularity

• Provide tools and equipment to non-professional user base for projects

• Interest in providing variety of manufacturing techniques, so beneficial to include CNC

https://cloudnc.com/cnc-best-practices-3-whats-the-difference-
between-3-axis-4-axis-5-axis-milling/

https://www.emachineshop.com/
sample-parts/

https://www.productivity.com/
do-more-with-less-5-axis-
machining/

https://trulifeengineeredsolutions.com/
products/defense/
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Introduction and Motivation

• Learning to use a CNC machine is difficult

• Many parameters to define; ideal settings are learned through exhaustive training AND 

experience

• Staff must dedicate much time to training, watching new users

• Risk of damage to machine or people

• Time lost in repairs

• Seek to make makerspaces safer/more efficient by making CNC easier to learn

• Offer feedback about parameter selection

• Feedback generated through machine learning (ML) models

• Models classify cut aggressiveness
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Introduction and Motivation

• Previous research [1] was able to classify cuts with force-data-based machine learning models

• Data was taken from force sensors built-in to machine

• Not cheap!

• Current work has sought to replicate results with acoustic data

• Goal is for acoustic-data-based models to perform at least as well as force-based ones

[1] N. Greenfield, “Using Machine Learning to Identify Machining Parameters in Computer Numerical Control,” M.S. Thesis, College of 

Eng., Georgia Institute of Technology, Atlanta, Georgia, 2022. Available: https://smartech.gatech.edu/handle/1853/67296

𝐹𝑍

𝐹𝑌

𝐹𝑋

Spindle 
Power

https://www.canadianmetalworking.com/canadianmetalworking/
article/cuttingtools/the-versatility-of-multifunctional-milling-tools

COMPARE

https://smartech.gatech.edu/handle/1853/67296


5

Mission Relevance

• This research lays the foundations for sensing machine behavior through side channel data 
streams

• Insight into parameters (depth of cut, feedrate, etc.) without direct interaction/measurement

• Possible data streams include temperature, power consumption, cutting forces, etc.

• Use cases:

• Identification of operations being performed (e.g., roughing vs. finishing)

• Detection of material loaded (e.g., something common like aluminum or steel vs. something 
more exotic like tungsten)

• Detection of outside interference (detect cyber threats, presence of malware)
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Technical Work Overview

• Experiments performed using EMCO E350 CNC

• Force data collected using drive axis force sensor & spindle power sensor

• Acoustic data collected using PCB Piezotronics 130F21 microphone & Raspberry Pi
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Experiment Setup

• Three feedrates correspond to three aggressiveness levels

• Conservative, optimal, aggressive

• Feedrate controlled with feedrate override on EMCO

• Training and Testing geometry

Training Geometry Testing Geometry
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Data Processing

• Force:

• Continuous Wavelet Transform (CWT) to 
generate frequency features

• 630 total features (time domain and 
frequency)

• Pearson Correlation & MI Scores to down 
select

• Acoustic

• Log-mel spectrogram generated for recorded 
sound

• Principal component analysis (PCA) to reduce 
dimensionality

• Keeping 20 features 
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Machine Learning Models

• Models classify aggressiveness into 3 categories: 
Conservative, Optimal, and Aggressive

• 5 Models Trained on each data source:

• Multilayer Perceptron (MLP), K-Nearest 
Neighbors (KNN), Decision Tree (DT), Random 
Forest (RF), Logistic Regression (LR)

• Performance evaluated using area under the 
receiver operating characteristic curve (AUC)

• Closer to 1 -> better prediction

• Closer to 0.5 -> random guessing
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Results

• Force Models
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Results

• Force Models

MLP
C: 0.754
O: 0.522
A: 0.597

KNN
C: 0.794
O: 0.626
A: 0.651

DT
C: 0.626
O: 0.507
A: 0.657

RF
C: 0.728
O: 0.646
A: 0.625

LR
C: 0.727
O: 0.555
A: 0.638
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Results

• Acoustic Models
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Results

• Acoustic Models

MLP
C: 0.760
O: 0.777
A: 0.849

KNN
C: 0.949
O: 0.959
A: 0.957

DT
C: 0.726
O: 0.760
A: 0.794

RF
C: 0.935
O: 0.938
A: 0.971

LR
C: 0.595
O: 0.431
A: 0.544
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Material Identification Investigation

• Does changing the material show up in the model performance evaluation?

• Change in model’s performance should reflect changed material

• Trained models on 7050 aluminum, tested on 6061 aluminum

• 7050 selected for higher yield strength, slightly lower machinability

• Wanted to see how classifications shifted

• How were cuts being misclassified? 

• Looked at confusion matrices

Force & acoustic 

data from 7050 

Al cut

Train models & 

optimize 

hyperparameters

Test models on 

data from 6061 

Al cut

Compare 

confusion 

matrices for 

7050 Al cuts & 

6061 Al cuts
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Material ID Preliminary Results



16

Material ID Preliminary Results
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Material ID Preliminary Results
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Material ID Preliminary Results
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Material ID Preliminary Results
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Material ID Preliminary Results
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Conclusion & Future Work

• CNC machining is an important manufacturing technique that presents challenges to novice 
users

• Machine learning can be used to classify cut aggressiveness through side channel data

• Acoustic models performed at least as well as force models

• Can offer insights into how machine is being used

• Future work:

• Investigate effects of tool wear

• Close loop for user feedback

• Implement in real-time format
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