

4H-Silicon Carbide as Field Deployable Sensor for Trace Actinide Detection

Daryl Giglio

The Ohio State University

Advisor: Dr. Raymond Cao

ETI Annual Workshop

February 20 – 21, 2024, Golden, CO

Introduction and Motivation

- Analysis of in-field samples have provided valuable information
 - Scale of incident
 - Critical path to containment/treatment
- Exporting samples to be characterized in labs can be time consuming.
 - Loss of critical time that can be used for containment
 - Mobility of actinides in environment (air, soil, ground water, etc...)
- On site, rapid sample analysis can mitigate the need for exporting of samples to lab and can be done in-field.

Introduction and Motivation

- Characterization is possible due to common decay modes of actinides.
- The high-noise environment associated with in-field sampling poses a great application for rad-hard, wide band-gap semiconductors such as 4H-Silicon Carbide (SiC).
- 4H-SiC is a wide band gap semiconductor that possesses great characteristics for in-field sample analysis
 - High breakdown voltage
 - Low leakage current
 - High radiation tolerance
 - Variable temperature operation
- 4H-SiC Schottky Barrier Diodes (SBD) alpha spectroscopy coupled with differential pulse voltammetry provides small form factor for rapid sample analysis.

Goals:

- Characterize 4H-SiC SBD devices for applications as a field deployable sensors.
- Investigate efficacy of on-site sampling coupling DPV with alpha spectroscopy. **Objectives:**
- Demonstrate rapid characterization of trace electrodeposited actinide samples with DPV and alpha spectroscopy

Methods and Materials – Proposed Process

This study focuses primarily on liquid samples.

- 1. Sample is collected then run through DPV analysis.
- Post-DPV, if any special nuclear material (SNM) is identified, sample is prepared for electrodeposition.
 a.) DPV solution is very similar to electrodeposition solution to provide ease of transition into electrodeposition step
- 3. Sample is electrodeposited onto the surface of the 4H-SiC SBD contact.
- 4. Alpha spectroscopy is collected.
- 5. Device is then electrochemically stripped cleaned via physical abrasion to be prepared for another sample.

Methods and Materials – 4H-SiC SBD

- 4H-SiC Schottky Barrier Diodes
 - 300 nm Pt Schottky Contact
 - 20 µm 2E14 Nitrogen-doped epitaxial layer
 - $350 \ \mu m Bulk/substrate layer$
 - 80/100 nm Ni/Pt bilayer ohmic contact.
- Contact area is 4x4 mm to provide large surface for electrodeposition.
- Pt Contact is highly-corrosive resistant to prevent any damage from acids associated with electrodeposition and electrochemical stripping process.

Methods and Materials – Electrodeposition

2 main steps occur in the electrodeposition process

- A thin layer of mercury is deposited onto the contact metal
 - The layer of mercury serves multiple purposes
 - Prevents hydrogen evolution reactions (HER) during the electrodeposition process
 - Bubbles limit electrodeposition and causes spikes in DPV analysis
- The deposition of actinides is deposited onto the layer of mercury.
 - In real application, isotopes of interest would be Plutonium (Pu) and Uranium (U).
 - 241 Am is used in place of Plutonium (NIST 4322-d)
 - A NIST standard containing 234 U, 235 U, and 238 U is also used in the electrodeposition (NIST 4321-d)

Technical Work and Results – I/V and C-V

- I/V curves collected at each stage of the electrodeposition process to ensure repeatable measurements
- No major changes in leakage current or turn-on voltage at any stage in the electrodeposition process

4H-SiC Field Deployable Sensor I/V

Technical Work and Results – I/V and C-V

 (F^{2})

1/C²

-30.0

- C-V analysis is also conducted at each stage to confirm no changes in:
 - Depletion Region
 - Resolution
- 1/C² is also extracted to look for any change in dopant profile or built-in voltage.

Technical Work and Results – Alpha Spectroscopy

Alpha Spectroscopy of Electrodeposited Sources on 4H-SiC SBD - 8 Hour Collection

- After 8 hours of collection, we can resolve most actinides present in solution.
 - ²³⁵U is present in NIST 4321d in extremely small quantities and does not appear in alpha spectrum due to low specific activity (1.535E-8 Ci/g)
- Alpha spectroscopy provides a general idea of the isotopes present in the solution

- Peak channels are extracted from alpha spectrum to generate an energy calibration curve for this detector under these conditions (Electrodeposited actinides and Hg)
- Linear behavior suggest reliable spectrum is collected and device operation is as expected.
- Extended alpha spectrum was collected to confirm results and extract isotope ratios.

Peak Channel Locations of Electrodeposited Sources on 4H-SiC

Technical Work and Results – Alpha Spectroscopy

0.00035

Technical Work and Results – Isotopic Ratios

- Peaks were separated and integrated accordingly to their respective isotopes then normalized to each isotopes specific activity to provide atomic % of isotopes collected in spectroscopy.
- Shows agreement with NIST standard reported values.

Isotopes	Specific Activities (Ci/g)	Peak Integration	Activity (Bq) - 2Pi	Activity (Bq) - 4Pi	Convert to Ci (Ci)	Normalized to Specific Activity (Mass in g)	Number of Atoms (Uranium)	Number of Atoms (Americium)	Isotopic Ratio by Total Mass	Atomic Ratio of Uranium
²³⁸ U	3.36E-07	3389	0.01275038	0.02550076	6.8921E-13	2.05E-06	5.19E+15		9.9994E-01	9.99939E-01
²³⁴ U	6.30E-03	3835	0.014428359	0.028856717	7.79911E- 13	1.24E-10	3.18E+11		6.03E-05	6.13824E-05
²⁴¹ Am	3.4	10653	0.04007961	0.08015922	2.16647E- 12	6.37196E-13		1591290920	3.10623546E-07	

Isotopes	Atomic % - NIST (%) Normalized without ²³⁵ U	Atomic % - Alpha Spectroscopy (%)
²³⁸ U	99.994715	99.99386
²³⁴ U	0.005285	0.006138

- Confirm isotopic ratios extracted from alpha spectroscopy with inductively coupled plasma mass spectrometry (ICP-MS) results.
- Perform multiple cycles on 4H-SiC SBD to understand total device lifetime in this setup.
 - Current device has undergone 2 cycles successfully.
 - Adjustments to design to prolong device lifetime
- Compare analysis time to other forms of in-field sampling analysis.

Conclusion

- 4H-SiC SBD were electrodeposited with actinides electrodeposited from a DPV analyzed solution.
- 4H-SiC SBD I/V and C-V was monitored at each step of the electrodeposition process to ensure stability of device through out the analysis.
- Alpha spectroscopy was collected from the 4H-SiC SBD to gain isotope information about electrodeposited actinides.
 - Peaks clearly distinguished at 8 hours
- Alpha spectroscopy collection was extended to confirm isotopic information and extract more information from samples.
- Isotope ratio data extracted shows agreement with NIST standard 4321d. Data to be further validated by ICP-MS results.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

