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Background

Problem: An under-quantified hazard

Metal contamination in the environment is a widespread
problem that results from mining, industrial processes,
agricultural inputs, sewage sludge releases, and munitions
activities. High metal contamination can inhibit crop growth,
risk food safety, and jeopardize human health (1). Metals can
also impede many aspects of ecosystem functioning,
including biomass production, plant recolonization, and
community assembly (2,3). However, identifying locations
with high metal contamination is costly and labor-intensive,
which prohibits large scale monitoring efforts.

Our inability to quantify metal contamination at relevant
scales for land management decisions limits our ability to
predict how contamination alters ecosystem functions; and
subsequently undercuts our capacity to assess and mitigate
risks to communities, the environment, and food supplies.

Solution: Hyperspectral bioindicators
Hyperspectral remote sensing (imaging spectroscopy)
collects hundreds of very narrow (~3-20 nm), contiguous
bands. This increased spectral resolution allows for greater
diagnostic capabilities than is possible with multispectral
sensors (4).

Vegetation spectra and functional traits
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Figure 1. Example of vegetation spectra. Contiguous data over narrow
bands yields more information.

When plants are exposed to environmental stressors, they
can respond with detectable physiological or chemical
changes. Spectroscopy is already in widespread use to
measure agricultural productivity and plant functional traits
(5, 6). The increasing availability of spaceborne hyperspectral
imaging platforms offers unprecedented potential to collect
remote, high-frequency, non-destructive measurements over
large scales. These could be used to identify diagnostic
spectral features associated with vegetative stress responses
to known chemical constituents.
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Developing these features could leverage local vegetation
as passive, low-cost bioindicators of pollution.
Operationalizing this requires: (i) quantifying the
physiological and chemical changes that contaminants
induce in vegetation; (ii) differentiating between stress
responses induced by contaminants versus other
environmental stressors; (iii) assessing the interactive effects
between multiple environmental stressors; and (iv)
characterizing species-specific interactions with
contaminants.

Methods

Metals of interest

This work focuses on chromium(VI) and copper
contamination. Chromium(V1) is widely used to prevent
corrosion in nuclear power reactors and other large-scale
industrial facilities. It is also extremely hazardous to human
health and drinking water sources. Identifying hyperspectral
bioindicators for chromium(VI) would enable airborne
sensors to monitor local vegetation for pre-visual stress
responses as indications of accidental releases or slow leaks
that might otherwise go unnoticed until such problems
become obvious and cause more extensive damage.

Copper is essential for plant health, but can become toxic at
high concentrations. Given the relative differences in their
toxicity, plant translocation pathways and stress responses to
these metals may be sufficiently different (7,8,9) that
vegetation exposed to different contaminants could be
spectrally distinct. The relatively lower risk of handling
copper also made it feasible to incorporate a drought
treatment to explore whether metal-induced stress could
be differentiated from other environmental stressors.

Multi-stressor pot experiment

We conducted a field experiment in which 147 pots of tall
fescue were exposed to different types and concentrations of
metal contamination (chromium(VI), copper, and copper +
drought) ranging between o0 -1000 mg/kg.
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Figure 2. Multi-stressor pot experimentinstalledat0)  Figure3. Higher contamination levels induced
Ger Turfgrass Facillty near Madison, Wi more biomass loss and visible stress.

Linear mixed-effects modeling

Reports of metal exposures altering reflectance at numerous
wavelengths and vegetation indices use diverse methods and
are often poorly replicated. It is not clear whether these
findings are generalizeable, or whether they are specific to
particular plant-metal species combinations. | used linear
mixed-effects modeling to assess the explanatory power of
the metal dose to predict the reported bioindicators. | used
backwards model selection by ANOVA. This approach has the
advantage of summarizing the utility of many reported
bioindicators using a unified, comparable method.

Results

Assessing previously reported bioindicators
Figure 4 is a visual summary of how reported bioindicators
performed on data collected from my experiment.
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Figure 4. Vegetation indices and single wavelengths (nm) previously
reported in association with copper, chromium(V1), or multiple metals.

The lower left quadrant shows bioindicators that were
reported to have an association with exposure to copper, or
metals in general, but for which my regressions found no
significant relationship with eith copper or chromium(V1)
dose. The upper right quadrant shows bioindicators reported
in association with chromium(VI) or multiple metals. These
indicators were significantly related to doses of both types of
metal in my tests, making them ineffective in differentiating
between metal exposures, but potentially helpful in
monitoring for general metal contamination.
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The upper left quadrant shows a bioindicator reported in
association with several metals, but which my tests found
was only significantly related to copper dose. The lower right
quadrant shows bioindicators reported in association with
copper or multiple metals, but which were only significantly
related to chromium(VI) dose in my analyses.

There are many reasons why the reported bioindicators may
not perform as one might have expected. To start, using
reflectance at a single wavelength as a bioindicator is likely to
be confounded with instrument noise or other sources of
error. The purpose of using a normalized difference is to
compare the change in a wavelength of interest relative to
another thatis generally stable. Single wavelengths are
included in this analysis in the interest of synthesizing
literature as it was reported.

Additionally, these bioindicators came from studies spanning
a broad range of plant and metal species, growing conditions,
development stages, exposure treatments, measurement
protocols, and analytical methods. Limited replication means
we have only a little insight into how these parameters may
interact and produce ungeneralizable results. This
underscores how imperative it is to further standardize
experimental and analytical approaches to replicate realistic
environmental exposures. There remains considerable
opportunity to link metal-induced spectral changes to known
physiological and chemical mechanisms.
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