

Fission Product Yield Measurements of ²³⁹Pu Irradiated at the USGS **TRIGA Reactor** Vanessa Linero^[1], Todd Bredeweg^[2], Matthew Gooden^[2], Jessica Jackson^[1], Jenifer Shafer^[1]

1. Colorado School of Mines, Golden, CO 80401, 2. Los Alamos National Laboratory, Los Alamos, NM, 87545

accurately predict the fission behavior at varying neutron energies.

used for nuclear applications.

Figure 2: PuO₂ powder wrapped in Al foil (left) and neutron flux monitors mounted onto quartz tubing (right).

The target was mounted along the vertical centerline of a customized irradiation can and irradiated in the Central Thimble.

Bare irradiation: The target excluded any neutron shield and was exposed to the entire neutron spectrum.

Hardened spectrum: The target was wrapped in Cd to shield the target from thermal neutrons and expose the target to a harder neutron spectrum.

ETI Annual Workshop, February 20 - 21, 2024

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

	Cd-wrapped	0.0025 eV	0.5 MeV	2MeV
	3.21(5)	4.82(7)	4.76(3)	4.8(1)
	5.9(2)	6.21(9)	6.23(4)	6.1(2)
)	0.215(3)	0.295(8)	0.355(7)	0.388(8)
5)	0.030(2)	0.039(2)	0.077(3)	0.094(4)
.)	0.085(4)	0.1(6)	0.06(3)	0.06(4)
	5.9(2)	6.61(3)	6.57(5)	6.4(1)
	4.7(2)	5.35(7)	5.30(4)	5.3(2)
	2.00(8)	2.00(6)	2.01(1)	2.15(4)

National Nuclear Security Administration