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We want to improve radiological search by expanding the capabilities of collaborative SLAM (simultaneous ‘ - e | = g LBNL F|.ght Test Trajectory 04 L AMP UAY
localization and mapping) —i.e., the process where teams of robots make maps of unknown environments. _atliiinaens o= < i Moo "’ == Tl
Expanding collaborative SLAM capabilities enables faster/more versatile search and a reduced cost of I £ R A’s Communicated
onboard sensors, allowing the fielding of more agents. Our solution should address these challenges: i s N : : :
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(1) GPS denied / No prior maps (2) Low communication bandwidth (3) Dynamic network topology
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Takeaway: Initial experiments equip LAMP UAV with multiple UWB sensors for real-time relative pose
estimation. Future work will fly multiple LAMPs and integrate UWB directly into SLAM solution.
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Takeaway: Picture above is the LAMP (Localization and Mapping Platform) and a radiological search map Takeaway: Our minimal communication protocol enables accurate relative pose estimation without the M at h e Im at| C al FO 'm U I at| O N
it created. These state-of-the-art results were produced by our collaborators at LBL [1]. Expanding this need for continuously transmitted measurements, such as odometry. Our approach only uses locally

technology to multiple collaborating LAMP agents would improve radiological search capabilities. collected UWB relative range measurements and assumptions about each agents’ global Nas Np

altitude/roll/pitch. Said assumptions are transmitted once and are locally monitored by each agent. If . - - A. A A ~A ~A AA
an assumption changes or is violated, the agent can perform a one-off transmission to notify the swarm. 111111 2 2 E €B% T (.’L’B ) yB | ZB ) OfB s P By ’)/B )
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o mbos oot Takeaway: Ultra-Wideband (UWB) is a cheap and EX p er | m e Nt S 2 D L ab O rat O ry ReS U I tS

Relative Range v mature RF technology that can provide accurate

relative range measurements at a high rate dA TA dAZ. TA
. . j g, —dp,(Tp) ) —  dp (Tp)
Shift only 0.47 477 | 073 | 044 4.61 .

without external infrastructure. By equipping
each agent with multiple UWB sensors, we can . | | e e 0.08 | 340 ) 0471 091 | 3571 0 \—,_/ N’
fuse sets Of relatlve range measurements, into a * Time [eec] Weighted (Eq. 8) [Proposed] || 0.13 | 0.52 | 0.11 | 021 | 0.96 . blaS adjusted measurement expected measurement
Relative Fose full relative pose estimate {i.e., both relative \ Methiod Mean | Max | Sid_| Mean | Max | Sid Takeaway: We formulate our approach as a nonlinear optimization problem (i.e., trilateration). B
via *Trilateration’ position and heading). This trilateration process S on o [oom | 1o | o | &5 | S =en °bB i P - DNl Y
G Ttn TR Movingévs oy 03 | s1o6 | 593 | 1155 | s0es | 901 leveraging our minimal communication model (see Algorithmic Approach), a robust loss function (Huber
Unweighted (Eq. 3) 6.15 58.70 8.38 5.99 51.71 7.91 . . . .
Weighted (Eq. § [Proposed] | 395 | 1197 | 298 | 422 | 1331 | 303 loss), and a learned pose-dependent measurement bias correction (see UWB Noise Modeling), we can
estimate a full 3D pose from a single set of instantaneous relative range measurements (i.e., no

works similarly to GPS. i
supplementary measurements need to be continuously transmitted).
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Takeaway: Experiments of 2D approach provides mean abs position and heading errors of 0.21m and 4.22¢
respectively across numerous tests (one trial shown).
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Approach

Traditional inter-agent loop closures loop closures ‘ . _
‘ (e.qg., camera, LiDAR, etc.) =25 ' . NeXt Steps
> 2 _ S S | Integrate 3D pose error model (i.e., DOP) into SLAM pipeline
=3 ” =% (e . S Abs Pose Exror o o Companent_ Integration of UWB into full Kimera-Multi SLAM stack

Abs Position Error [m] [ Abs Heading Error [deg]

e~ 63 RS et e == CORA extension, LBL plume exploration, GT collaboration

042 150 028 | 101 199 121 Working towards multiple airborne LAMP drones

.. 1| 034 149 032 | 104 139.0 122
Using inter-agent UWB loop closures [l S _ 515339 103 77 T 138

(i.e., our approach) 095 258 090 | 78 1773 128
It 027 102 014 | 7.6 1726 125

0.21 0.98 a . 172.8

TABLE I: Evaluation of pose emmor in meters and degrees between algorithms. The final row (red) represents the proposed approach.

Publications

Takeaway: Leveraging inexpensive UWB technology, collaborating agents do not need to cross paths while
creating an inter-agent map. This increases the overall speed and effectiveness of radiological search.
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Takeaway: Roboticists often model UWB relative range error as a zero-mean Gaussian and supplement
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