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Goals & Objectives
o We propose a multi-task learning network featuring a shared 

U-Net encoder for both  classification and segmentation tasks.

o Enhance parameter prediction for best fit ellipse extraction 

from TT images and improve segmentation accuracy in SEM 

images.

o We aim to exploit similarities between images of defects of 

additively manufactured metals despite the disjoint nature of 

the datasets, 
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o Improved segmentation maps assessed via Binary Cross Entropy 

and Intersection-Over-Union as compared to single task 

performance (minimize BCE, Maximize IoU).

o Improvement in parameters of best fit ellipse including angle of 

orientation, semi major, and semi minor radii.
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o Microscopic pores in 3D printed metallic structures, crucial 

for nuclear reactor development, can be detected pre-

deployment via destructive and nondestructive methods.

o Scanning electron microscopy (SEM) efficiently images large 

sections with low spatial resolution (10 nm/pixel).

o Thermal Tomography (TT) , employing Pulsed Infrared 

Thermography (PIT) data, reconstructs thermal effusivity, 

aiding defect visualization.

o Multitask learning facilitates training a single model for 

multiple tasks, providing multiple predictions, parameters, 

and/or segmentation masks.

o Shared network parameters enhance performance across 

multiple tasks compared to individual task-focused models.

o Augment non-destructive TT data with experimentally captured 

pulsed infrared thermography images.

o Employ semi-supervised training, using predictions in 

segmentation and classification tasks as ground truth labels, an 

approach suitable for smaller datasets.

o Extend multi-task learning analysis to diverse image defect 

datasets, such as high-resolution X-Ray computed 

thermography, as well as lower resolution ultrasonic or eddy 

current images.

Data Set Metric Single-Task Multi-Task

Training BCE 0.03 0.01

Testing BCE 0.31 0.03

Training IoU 0.88 0.92

Testing IoU 0.81 0.87
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Network 
Single-

Task

Multi-
Task

Single-
Task

Multi-
Task

Single-
Task

Multi-
Task

Pearson R -0.34 0.82 0.89 0.96 0.92 0.97

Spearman R -0.28 0.80 0.92 0.96 0.93 0.96

𝜃

o Novel multitask learning approach, simultaneously performing classification of 

synthetic TT images, and segmentation of experimental SEM images.

o MTL network is implemented as a shared U-net encoder between the 

classification and the segmentation tasks which then splits into separate branches 

for each task, generating a binary segmentation mask for the SEM images, and 

predicting characteristic parameters for the elliptical defects in simulated TT 

images.

Figure 1: Sample SEM images (top) and sample simulated Thermal Tomography images (bottom)
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Table 1: Binary Cross Entropy (BCE) loss and mean Intersection-over-Union (IoU) for a Single-Task U-Net model, and 
Multi-Task Learning network that includes U-Net model. 

Table 2: Values of Pearson r and Spearman 𝜌 correlation coefficients for predictions of elliptical defect angle of 
rotation θ, semi-major axis Rx, and semi-minor axis Ry.
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