

Nicole Hege¹, Jessica Jackson¹, Shane Galley¹, Amanda Lines², Samuel Bryan², Adan Medina², Jenifer C. Shafer¹ ¹Department of Chemistry, Colorado School of Mines, Golden, CO 80401; ²Energy & Environment Directorate, Pacific Northwest Laboratory, Richland, WA 99352 **Contact: nicolehege@mines.edu**

Introduction

- Advancing MSR technology requires an understanding of the chemistry of the components in the eutectics in real-time
- Call to develop hybrid technologies for real-time quantification of chemical species and to achieve control of redox potentials in molten salt systems

Online Monitoring

- Provides electronic and vibrational signatures to characterize and monitor in real-time chemical species in the molten salt
- Key benefits are nondestructive data collection and proliferation risk minimization

Questions

- What chemistry is taking place that can contribute to reduction and oxidation effects?
- How does the concentration of the analyte affect the speciation of the metal in the melt?

Objective

To inform MSR pyroprocessing redox systems through online monitoring by obtaining fundamental data on uranium and selected lanthanides coupling electrochemistry with optical spectroscopy (UV-Vis) and vibrational spectroscopy (NIR).

- Step 1: Verify all systems work within the high temperature furnace
- Step 2: Test electrochemistry systems at high temperature in molten salts
- **Step 3**: Electrochemically determine the concentration where aggregation starts to form at a larger scale
- Step 4: Test electrochemistry system at a small scale with UV-Vis measurements to determine species at the electrode

Acknowledgments and References

Funding for this research was provided by the NNSA and the ETI consortium. Special thanks to ETI for the invitation and opportunity to present my research.

Hege, N.; et al. J. Electrochem. Soc. 2023, 170, 016503. Schroll, C. A.; et al. *Electroanalysis*. **2016**, 28, 2158 – 2165.

Jenifer Shafer

Nicole Hege

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921. Unclassified.

Uranium and Europium Molten Salt Spectroelectrochemistry

ETI Annual Workshop, February 20-21, 2024

Jessica Jackson Shane Galley

Adan Medina

Sam Bryan

Amanda Lines

Jacob Tellez

David Wu

Neil Henson

Aurora Clark

Molten
Molten salt electr successes Proper heat/co Electrodes ass
 Featureless bat No corrosion o UV-Vis signatu Experiment detail 1.5g total of mi 2 mm pathleng Internal temper
9.4 0.02 0.02 0.02 0.02 0.04 -0.06 -0.06 -0.08 -1.6 -1.2
$(\mathbf{x}) = \mathbf{x} + \mathbf{10^{-4}}$
 High Metal Load Determine p Eu(III) and b Determine d concentration Diffusion Coeffic Determine t eutectic met Determine t molten salt

Will Smith

COLORADO SCHOOL OF

MINES

Salt Small Scale System

Future Work

ling Measurements

possible redox potential changes with increasing U(III) concentrations in LiCI-KCI

- diffusion differences at higher analyte
- **DNS**
- cients
- the diffusion coefficient for Eu(III) in the LiCI-KCI
- the diffusion coefficient for U(III) and U(IV) in mixtures with spectroscopy

PNNL-SA-185235